src/HOL/Probability/Projective_Family.thy
changeset 50042 6fe18351e9dd
parent 50041 afe886a04198
child 50087 635d73673b5e
equal deleted inserted replaced
50041:afe886a04198 50042:6fe18351e9dd
       
     1 (*  Title:      HOL/Probability/Projective_Family.thy
       
     2     Author:     Fabian Immler, TU München
       
     3     Author:     Johannes Hölzl, TU München
       
     4 *)
       
     5 
       
     6 header {*Projective Family*}
       
     7 
     1 theory Projective_Family
     8 theory Projective_Family
     2 imports Finite_Product_Measure Probability_Measure
     9 imports Finite_Product_Measure Probability_Measure
     3 begin
    10 begin
     4 
    11 
     5 definition
    12 definition
    97   assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" "L \<subseteq> I" and X: "X \<in> sets (PiM J M)"
   104   assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" "L \<subseteq> I" and X: "X \<in> sets (PiM J M)"
    98   shows "emeasure (PiP L M P) (prod_emb L M J X) = emeasure (PiP J M P) X"
   105   shows "emeasure (PiP L M P) (prod_emb L M J X) = emeasure (PiP J M P) X"
    99   using assms
   106   using assms
   100   by (subst PiP_finite) (auto simp: PiP_finite finite_subset projective)
   107   by (subst PiP_finite) (auto simp: PiP_finite finite_subset projective)
   101 
   108 
       
   109 lemma prod_emb_injective:
       
   110   assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
       
   111   assumes "prod_emb L M J X = prod_emb L M J Y"
       
   112   shows "X = Y"
       
   113 proof (rule injective_vimage_restrict)
       
   114   show "X \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))" "Y \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
       
   115     using sets[THEN sets_into_space] by (auto simp: space_PiM)
       
   116   have "\<forall>i\<in>L. \<exists>x. x \<in> space (M i)"
       
   117   proof
       
   118     fix i assume "i \<in> L"
       
   119     interpret prob_space "P {i}" using prob_space by simp
       
   120     from not_empty show "\<exists>x. x \<in> space (M i)" by (auto simp add: proj_space space_PiM)
       
   121   qed
       
   122   from bchoice[OF this]
       
   123   show "(\<Pi>\<^isub>E i\<in>L. space (M i)) \<noteq> {}" by auto
       
   124   show "(\<lambda>x. restrict x J) -` X \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i)) = (\<lambda>x. restrict x J) -` Y \<inter> (\<Pi>\<^isub>E i\<in>L. space (M i))"
       
   125     using `prod_emb L M J X = prod_emb L M J Y` by (simp add: prod_emb_def)
       
   126 qed fact
       
   127 
       
   128 abbreviation
       
   129   "emb L K X \<equiv> prod_emb L M K X"
       
   130 
       
   131 definition generator :: "('i \<Rightarrow> 'a) set set" where
       
   132   "generator = (\<Union>J\<in>{J. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I}. emb I J ` sets (Pi\<^isub>M J M))"
       
   133 
       
   134 lemma generatorI':
       
   135   "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> emb I J X \<in> generator"
       
   136   unfolding generator_def by auto
       
   137 
       
   138 lemma algebra_generator:
       
   139   assumes "I \<noteq> {}" shows "algebra (\<Pi>\<^isub>E i\<in>I. space (M i)) generator" (is "algebra ?\<Omega> ?G")
       
   140   unfolding algebra_def algebra_axioms_def ring_of_sets_iff
       
   141 proof (intro conjI ballI)
       
   142   let ?G = generator
       
   143   show "?G \<subseteq> Pow ?\<Omega>"
       
   144     by (auto simp: generator_def prod_emb_def)
       
   145   from `I \<noteq> {}` obtain i where "i \<in> I" by auto
       
   146   then show "{} \<in> ?G"
       
   147     by (auto intro!: exI[of _ "{i}"] image_eqI[where x="\<lambda>i. {}"]
       
   148              simp: sigma_sets.Empty generator_def prod_emb_def)
       
   149   from `i \<in> I` show "?\<Omega> \<in> ?G"
       
   150     by (auto intro!: exI[of _ "{i}"] image_eqI[where x="Pi\<^isub>E {i} (\<lambda>i. space (M i))"]
       
   151              simp: generator_def prod_emb_def)
       
   152   fix A assume "A \<in> ?G"
       
   153   then obtain JA XA where XA: "JA \<noteq> {}" "finite JA" "JA \<subseteq> I" "XA \<in> sets (Pi\<^isub>M JA M)" and A: "A = emb I JA XA"
       
   154     by (auto simp: generator_def)
       
   155   fix B assume "B \<in> ?G"
       
   156   then obtain JB XB where XB: "JB \<noteq> {}" "finite JB" "JB \<subseteq> I" "XB \<in> sets (Pi\<^isub>M JB M)" and B: "B = emb I JB XB"
       
   157     by (auto simp: generator_def)
       
   158   let ?RA = "emb (JA \<union> JB) JA XA"
       
   159   let ?RB = "emb (JA \<union> JB) JB XB"
       
   160   have *: "A - B = emb I (JA \<union> JB) (?RA - ?RB)" "A \<union> B = emb I (JA \<union> JB) (?RA \<union> ?RB)"
       
   161     using XA A XB B by auto
       
   162   show "A - B \<in> ?G" "A \<union> B \<in> ?G"
       
   163     unfolding * using XA XB by (safe intro!: generatorI') auto
       
   164 qed
       
   165 
       
   166 lemma sets_PiM_generator:
       
   167   "sets (PiM I M) = sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
       
   168 proof cases
       
   169   assume "I = {}" then show ?thesis
       
   170     unfolding generator_def
       
   171     by (auto simp: sets_PiM_empty sigma_sets_empty_eq cong: conj_cong)
       
   172 next
       
   173   assume "I \<noteq> {}"
       
   174   show ?thesis
       
   175   proof
       
   176     show "sets (Pi\<^isub>M I M) \<subseteq> sigma_sets (\<Pi>\<^isub>E i\<in>I. space (M i)) generator"
       
   177       unfolding sets_PiM
       
   178     proof (safe intro!: sigma_sets_subseteq)
       
   179       fix A assume "A \<in> prod_algebra I M" with `I \<noteq> {}` show "A \<in> generator"
       
   180         by (auto intro!: generatorI' sets_PiM_I_finite elim!: prod_algebraE)
       
   181     qed
       
   182   qed (auto simp: generator_def space_PiM[symmetric] intro!: sigma_sets_subset)
       
   183 qed
       
   184 
       
   185 lemma generatorI:
       
   186   "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> generator"
       
   187   unfolding generator_def by auto
       
   188 
       
   189 definition
       
   190   "\<mu>G A =
       
   191     (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = emeasure (PiP J M P) X))"
       
   192 
       
   193 lemma \<mu>G_spec:
       
   194   assumes J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
       
   195   shows "\<mu>G A = emeasure (PiP J M P) X"
       
   196   unfolding \<mu>G_def
       
   197 proof (intro the_equality allI impI ballI)
       
   198   fix K Y assume K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "A = emb I K Y" "Y \<in> sets (Pi\<^isub>M K M)"
       
   199   have "emeasure (PiP K M P) Y = emeasure (PiP (K \<union> J) M P) (emb (K \<union> J) K Y)"
       
   200     using K J by simp
       
   201   also have "emb (K \<union> J) K Y = emb (K \<union> J) J X"
       
   202     using K J by (simp add: prod_emb_injective[of "K \<union> J" I])
       
   203   also have "emeasure (PiP (K \<union> J) M P) (emb (K \<union> J) J X) = emeasure (PiP J M P) X"
       
   204     using K J by simp
       
   205   finally show "emeasure (PiP J M P) X = emeasure (PiP K M P) Y" ..
       
   206 qed (insert J, force)
       
   207 
       
   208 lemma \<mu>G_eq:
       
   209   "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = emeasure (PiP J M P) X"
       
   210   by (intro \<mu>G_spec) auto
       
   211 
       
   212 lemma generator_Ex:
       
   213   assumes *: "A \<in> generator"
       
   214   shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = emeasure (PiP J M P) X"
       
   215 proof -
       
   216   from * obtain J X where J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
       
   217     unfolding generator_def by auto
       
   218   with \<mu>G_spec[OF this] show ?thesis by auto
       
   219 qed
       
   220 
       
   221 lemma generatorE:
       
   222   assumes A: "A \<in> generator"
       
   223   obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = emeasure (PiP J M P) X"
       
   224 proof -
       
   225   from generator_Ex[OF A] obtain X J where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A"
       
   226     "\<mu>G A = emeasure (PiP J M P) X" by auto
       
   227   then show thesis by (intro that) auto
       
   228 qed
       
   229 
       
   230 lemma merge_sets:
       
   231   "J \<inter> K = {} \<Longrightarrow> A \<in> sets (Pi\<^isub>M (J \<union> K) M) \<Longrightarrow> x \<in> space (Pi\<^isub>M J M) \<Longrightarrow> (\<lambda>y. merge J K (x,y)) -` A \<inter> space (Pi\<^isub>M K M) \<in> sets (Pi\<^isub>M K M)"
       
   232   by simp
       
   233 
       
   234 lemma merge_emb:
       
   235   assumes "K \<subseteq> I" "J \<subseteq> I" and y: "y \<in> space (Pi\<^isub>M J M)"
       
   236   shows "((\<lambda>x. merge J (I - J) (y, x)) -` emb I K X \<inter> space (Pi\<^isub>M I M)) =
       
   237     emb I (K - J) ((\<lambda>x. merge J (K - J) (y, x)) -` emb (J \<union> K) K X \<inter> space (Pi\<^isub>M (K - J) M))"
       
   238 proof -
       
   239   have [simp]: "\<And>x J K L. merge J K (y, restrict x L) = merge J (K \<inter> L) (y, x)"
       
   240     by (auto simp: restrict_def merge_def)
       
   241   have [simp]: "\<And>x J K L. restrict (merge J K (y, x)) L = merge (J \<inter> L) (K \<inter> L) (y, x)"
       
   242     by (auto simp: restrict_def merge_def)
       
   243   have [simp]: "(I - J) \<inter> K = K - J" using `K \<subseteq> I` `J \<subseteq> I` by auto
       
   244   have [simp]: "(K - J) \<inter> (K \<union> J) = K - J" by auto
       
   245   have [simp]: "(K - J) \<inter> K = K - J" by auto
       
   246   from y `K \<subseteq> I` `J \<subseteq> I` show ?thesis
       
   247     by (simp split: split_merge add: prod_emb_def Pi_iff extensional_merge_sub set_eq_iff space_PiM)
       
   248        auto
       
   249 qed
       
   250 
       
   251 lemma positive_\<mu>G:
       
   252   assumes "I \<noteq> {}"
       
   253   shows "positive generator \<mu>G"
       
   254 proof -
       
   255   interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
       
   256   show ?thesis
       
   257   proof (intro positive_def[THEN iffD2] conjI ballI)
       
   258     from generatorE[OF G.empty_sets] guess J X . note this[simp]
       
   259     have "X = {}"
       
   260       by (rule prod_emb_injective[of J I]) simp_all
       
   261     then show "\<mu>G {} = 0" by simp
       
   262   next
       
   263     fix A assume "A \<in> generator"
       
   264     from generatorE[OF this] guess J X . note this[simp]
       
   265     show "0 \<le> \<mu>G A" by (simp add: emeasure_nonneg)
       
   266   qed
       
   267 qed
       
   268 
       
   269 lemma additive_\<mu>G:
       
   270   assumes "I \<noteq> {}"
       
   271   shows "additive generator \<mu>G"
       
   272 proof -
       
   273   interpret G!: algebra "\<Pi>\<^isub>E i\<in>I. space (M i)" generator by (rule algebra_generator) fact
       
   274   show ?thesis
       
   275   proof (intro additive_def[THEN iffD2] ballI impI)
       
   276     fix A assume "A \<in> generator" with generatorE guess J X . note J = this
       
   277     fix B assume "B \<in> generator" with generatorE guess K Y . note K = this
       
   278     assume "A \<inter> B = {}"
       
   279     have JK: "J \<union> K \<noteq> {}" "J \<union> K \<subseteq> I" "finite (J \<union> K)"
       
   280       using J K by auto
       
   281     have JK_disj: "emb (J \<union> K) J X \<inter> emb (J \<union> K) K Y = {}"
       
   282       apply (rule prod_emb_injective[of "J \<union> K" I])
       
   283       apply (insert `A \<inter> B = {}` JK J K)
       
   284       apply (simp_all add: Int prod_emb_Int)
       
   285       done
       
   286     have AB: "A = emb I (J \<union> K) (emb (J \<union> K) J X)" "B = emb I (J \<union> K) (emb (J \<union> K) K Y)"
       
   287       using J K by simp_all
       
   288     then have "\<mu>G (A \<union> B) = \<mu>G (emb I (J \<union> K) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y))"
       
   289       by simp
       
   290     also have "\<dots> = emeasure (PiP (J \<union> K) M P) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)"
       
   291       using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq Un del: prod_emb_Un)
       
   292     also have "\<dots> = \<mu>G A + \<mu>G B"
       
   293       using J K JK_disj by (simp add: plus_emeasure[symmetric])
       
   294     finally show "\<mu>G (A \<union> B) = \<mu>G A + \<mu>G B" .
       
   295   qed
       
   296 qed
       
   297 
   102 end
   298 end
   103 
   299 
   104 end
   300 end