src/HOL/Library/Countable.thy
changeset 26169 73027318f9ba
child 26243 69592314f977
equal deleted inserted replaced
26168:3bd9ac4e0b97 26169:73027318f9ba
       
     1 (*  Title:      HOL/Library/Countable.thy
       
     2     ID:         $Id$
       
     3     Author:     Tobias Nipkow
       
     4 *)
       
     5 
       
     6 header {* Encoding (almost) everything into natural numbers *}
       
     7 
       
     8 theory Countable
       
     9 imports Finite_Set List Hilbert_Choice
       
    10 begin
       
    11 
       
    12 subsection {* The class of countable types *}
       
    13 
       
    14 class countable = itself +
       
    15   assumes ex_inj: "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat"
       
    16 
       
    17 lemma countable_classI:
       
    18   fixes f :: "'a \<Rightarrow> nat"
       
    19   assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
       
    20   shows "OFCLASS('a, countable_class)"
       
    21 proof (intro_classes, rule exI)
       
    22   show "inj f"
       
    23     by (rule injI [OF assms]) assumption
       
    24 qed
       
    25 
       
    26 
       
    27 subsection {* Converion functions *}
       
    28 
       
    29 definition to_nat :: "'a\<Colon>countable \<Rightarrow> nat" where
       
    30   "to_nat = (SOME f. inj f)"
       
    31 
       
    32 definition from_nat :: "nat \<Rightarrow> 'a\<Colon>countable" where
       
    33   "from_nat = inv (to_nat \<Colon> 'a \<Rightarrow> nat)"
       
    34 
       
    35 lemma inj_to_nat [simp]: "inj to_nat"
       
    36   by (rule exE_some [OF ex_inj]) (simp add: to_nat_def)
       
    37 
       
    38 lemma to_nat_split [simp]: "to_nat x = to_nat y \<longleftrightarrow> x = y"
       
    39   using injD [OF inj_to_nat] by auto
       
    40 
       
    41 lemma from_nat_to_nat [simp]:
       
    42   "from_nat (to_nat x) = x"
       
    43   by (simp add: from_nat_def)
       
    44 
       
    45 
       
    46 subsection {* Countable types *}
       
    47 
       
    48 instance nat :: countable
       
    49   by (rule countable_classI [of "id"]) simp 
       
    50 
       
    51 subclass (in finite) countable
       
    52 proof unfold_locales
       
    53   have "finite (UNIV\<Colon>'a set)" by (rule finite_UNIV)
       
    54   with finite_conv_nat_seg_image [of UNIV]
       
    55   obtain n and f :: "nat \<Rightarrow> 'a" 
       
    56     where "UNIV = f ` {i. i < n}" by auto
       
    57   then have "surj f" unfolding surj_def by auto
       
    58   then have "inj (inv f)" by (rule surj_imp_inj_inv)
       
    59   then show "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat" by (rule exI[of inj])
       
    60 qed
       
    61 
       
    62 text {* Pairs *}
       
    63 
       
    64 primrec sum :: "nat \<Rightarrow> nat"
       
    65 where
       
    66   "sum 0 = 0"
       
    67 | "sum (Suc n) = Suc n + sum n"
       
    68 
       
    69 lemma sum_arith: "sum n = n * Suc n div 2"
       
    70   by (induct n) auto
       
    71 
       
    72 lemma sum_mono: "n \<ge> m \<Longrightarrow> sum n \<ge> sum m"
       
    73   by (induct n m rule: diff_induct) auto
       
    74 
       
    75 definition
       
    76   "pair_encode = (\<lambda>(m, n). sum (m + n) + m)"
       
    77 
       
    78 lemma inj_pair_cencode: "inj pair_encode"
       
    79   unfolding pair_encode_def
       
    80 proof (rule injI, simp only: split_paired_all split_conv)
       
    81   fix a b c d
       
    82   assume eq: "sum (a + b) + a = sum (c + d) + c"
       
    83   have "a + b = c + d \<or> a + b \<ge> Suc (c + d) \<or> c + d \<ge> Suc (a + b)" by arith
       
    84   then
       
    85   show "(a, b) = (c, d)"
       
    86   proof (elim disjE)
       
    87     assume sumeq: "a + b = c + d"
       
    88     then have "a = c" using eq by auto
       
    89     moreover from sumeq this have "b = d" by auto
       
    90     ultimately show ?thesis by simp
       
    91   next
       
    92     assume "a + b \<ge> Suc (c + d)"
       
    93     from sum_mono[OF this] eq
       
    94     show ?thesis by auto
       
    95   next
       
    96     assume "c + d \<ge> Suc (a + b)"
       
    97     from sum_mono[OF this] eq
       
    98     show ?thesis by auto
       
    99   qed
       
   100 qed
       
   101 
       
   102 instance "*" :: (countable, countable) countable
       
   103 by (rule countable_classI [of "\<lambda>(x, y). pair_encode (to_nat x, to_nat y)"])
       
   104   (auto dest: injD [OF inj_pair_cencode] injD [OF inj_to_nat])
       
   105 
       
   106 
       
   107 text {* Sums *}
       
   108 
       
   109 instance "+":: (countable, countable) countable
       
   110   by (rule countable_classI [of "(\<lambda>x. case x of Inl a \<Rightarrow> to_nat (False, to_nat a)
       
   111                                      | Inr b \<Rightarrow> to_nat (True, to_nat b))"])
       
   112     (auto split:sum.splits)
       
   113 
       
   114 
       
   115 text {* Integers *}
       
   116 
       
   117 lemma int_cases: "(i::int) = 0 \<or> i < 0 \<or> i > 0"
       
   118 by presburger
       
   119 
       
   120 lemma int_pos_neg_zero:
       
   121   obtains (zero) "(z::int) = 0" "sgn z = 0" "abs z = 0"
       
   122   | (pos) n where "z = of_nat n" "sgn z = 1" "abs z = of_nat n"
       
   123   | (neg) n where "z = - (of_nat n)" "sgn z = -1" "abs z = of_nat n"
       
   124 apply elim_to_cases
       
   125 apply (insert int_cases[of z])
       
   126 apply (auto simp:zsgn_def)
       
   127 apply (rule_tac x="nat (-z)" in exI, simp)
       
   128 apply (rule_tac x="nat z" in exI, simp)
       
   129 done
       
   130 
       
   131 instance int :: countable
       
   132 proof (rule countable_classI [of "(\<lambda>i. to_nat (nat (sgn i + 1), nat (abs i)))"], 
       
   133     auto dest: injD [OF inj_to_nat])
       
   134   fix x y 
       
   135   assume a: "nat (sgn x + 1) = nat (sgn y + 1)" "nat (abs x) = nat (abs y)"
       
   136   show "x = y"
       
   137   proof (cases rule: int_pos_neg_zero[of x])
       
   138     case zero 
       
   139     with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto
       
   140   next
       
   141     case (pos n)
       
   142     with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto
       
   143   next
       
   144     case (neg n)
       
   145     with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto
       
   146   qed
       
   147 qed
       
   148 
       
   149 
       
   150 text {* Options *}
       
   151 
       
   152 instance option :: (countable) countable
       
   153 by (rule countable_classI[of "\<lambda>x. case x of None \<Rightarrow> 0
       
   154                                      | Some y \<Rightarrow> Suc (to_nat y)"])
       
   155  (auto split:option.splits)
       
   156 
       
   157 
       
   158 text {* Lists *}
       
   159 
       
   160 lemma from_nat_to_nat_map [simp]: "map from_nat (map to_nat xs) = xs"
       
   161   by (simp add: comp_def map_compose [symmetric])
       
   162 
       
   163 primrec
       
   164   list_encode :: "'a\<Colon>countable list \<Rightarrow> nat"
       
   165 where
       
   166   "list_encode [] = 0"
       
   167 | "list_encode (x#xs) = Suc (to_nat (x, list_encode xs))"
       
   168 
       
   169 instance list :: (countable) countable
       
   170 proof (rule countable_classI [of "list_encode"])
       
   171   fix xs ys :: "'a list"
       
   172   assume cenc: "list_encode xs = list_encode ys"
       
   173   then show "xs = ys"
       
   174   proof (induct xs arbitrary: ys)
       
   175     case (Nil ys)
       
   176     with cenc show ?case by (cases ys, auto)
       
   177   next
       
   178     case (Cons x xs' ys)
       
   179     thus ?case by (cases ys) auto
       
   180   qed
       
   181 qed
       
   182 
       
   183 end