doc-src/TutorialI/ToyList/ToyList.thy
changeset 10302 74be38751d06
parent 10236 7626cb4e1407
child 10328 bf33cbd76c05
equal deleted inserted replaced
10301:8a5aa26c125f 10302:74be38751d06
   186 \begin{isabelle}
   186 \begin{isabelle}
   187 ~$i$.~{\indexboldpos{\isasymAnd}{$IsaAnd}}$x\sb{1}$~\dots~$x\sb{n}$.~{\it assumptions}~{\isasymLongrightarrow}~{\it conclusion}
   187 ~$i$.~{\indexboldpos{\isasymAnd}{$IsaAnd}}$x\sb{1}$~\dots~$x\sb{n}$.~{\it assumptions}~{\isasymLongrightarrow}~{\it conclusion}
   188 \end{isabelle}
   188 \end{isabelle}
   189 The prefix of bound variables \isasymAnd$x\sb{1}$~\dots~$x\sb{n}$ can be
   189 The prefix of bound variables \isasymAnd$x\sb{1}$~\dots~$x\sb{n}$ can be
   190 ignored most of the time, or simply treated as a list of variables local to
   190 ignored most of the time, or simply treated as a list of variables local to
   191 this subgoal. Their deeper significance is explained in Chapter~\ref{ch:Rules}.
   191 this subgoal. Their deeper significance is explained in Chapter~\ref{chap:rules}.
   192 The {\it assumptions} are the local assumptions for this subgoal and {\it
   192 The {\it assumptions} are the local assumptions for this subgoal and {\it
   193   conclusion} is the actual proposition to be proved. Typical proof steps
   193   conclusion} is the actual proposition to be proved. Typical proof steps
   194 that add new assumptions are induction or case distinction. In our example
   194 that add new assumptions are induction or case distinction. In our example
   195 the only assumption is the induction hypothesis @{term"rev (rev list) =
   195 the only assumption is the induction hypothesis @{term"rev (rev list) =
   196   list"}, where @{term"list"} is a variable name chosen by Isabelle. If there
   196   list"}, where @{term"list"} is a variable name chosen by Isabelle. If there