src/HOL/Arith.thy
changeset 4711 75a9ef36b1fe
parent 4360 40e5c97e988d
child 5183 89f162de39cf
equal deleted inserted replaced
4710:05e57f1879ee 4711:75a9ef36b1fe
    20 
    20 
    21 primrec "op -" nat 
    21 primrec "op -" nat 
    22   diff_0   "m - 0 = m"
    22   diff_0   "m - 0 = m"
    23   diff_Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
    23   diff_Suc "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
    24 
    24 
    25 syntax pred :: nat => nat
       
    26 translations "pred m" => "m - 1"
       
    27 
       
    28 primrec "op *"  nat 
    25 primrec "op *"  nat 
    29   mult_0   "0 * n = 0"
    26   mult_0   "0 * n = 0"
    30   mult_Suc "Suc m * n = n + (m * n)"
    27   mult_Suc "Suc m * n = n + (m * n)"
    31 
    28 
    32 end
    29 end