src/HOL/RealPow.thy
changeset 35216 7641e8d831d2
parent 35123 e286d5df187a
child 35343 523124691b3a
equal deleted inserted replaced
35215:a03462cbf86f 35216:7641e8d831d2
    17 
    17 
    18 lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n"
    18 lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n"
    19 apply (induct "n")
    19 apply (induct "n")
    20 apply (auto simp add: real_of_nat_Suc)
    20 apply (auto simp add: real_of_nat_Suc)
    21 apply (subst mult_2)
    21 apply (subst mult_2)
    22 apply (rule add_less_le_mono)
    22 apply (erule add_less_le_mono)
    23 apply (auto simp add: two_realpow_ge_one)
    23 apply (rule two_realpow_ge_one)
    24 done
    24 done
    25 
    25 
    26 lemma realpow_Suc_le_self: "[| 0 \<le> r; r \<le> (1::real) |] ==> r ^ Suc n \<le> r"
    26 lemma realpow_Suc_le_self: "[| 0 \<le> r; r \<le> (1::real) |] ==> r ^ Suc n \<le> r"
    27 by (insert power_decreasing [of 1 "Suc n" r], simp)
    27 by (insert power_decreasing [of 1 "Suc n" r], simp)
    28 
    28 
    55 apply (auto simp add: real_of_nat_one real_of_nat_mult)
    55 apply (auto simp add: real_of_nat_one real_of_nat_mult)
    56 done
    56 done
    57 
    57 
    58 lemma realpow_real_of_nat_two_pos [simp] : "0 < real (Suc (Suc 0) ^ n)"
    58 lemma realpow_real_of_nat_two_pos [simp] : "0 < real (Suc (Suc 0) ^ n)"
    59 apply (induct "n")
    59 apply (induct "n")
    60 apply (auto simp add: real_of_nat_mult zero_less_mult_iff)
    60 apply (auto simp add: zero_less_mult_iff)
    61 done
    61 done
    62 
    62 
    63 (* used by AFP Integration theory *)
    63 (* used by AFP Integration theory *)
    64 lemma realpow_increasing:
    64 lemma realpow_increasing:
    65      "[|(0::real) \<le> x; 0 \<le> y; x ^ Suc n \<le> y ^ Suc n|] ==> x \<le> y"
    65      "[|(0::real) \<le> x; 0 \<le> y; x ^ Suc n \<le> y ^ Suc n|] ==> x \<le> y"