src/HOL/Tools/Metis/metis_translate.ML
changeset 39946 78faa9b31202
parent 39896 13b3a2ba9ea7
child 39953 aa54f347e5e2
equal deleted inserted replaced
39945:277addece9b7 39946:78faa9b31202
       
     1 (*  Title:      HOL/Tools/Sledgehammer/metis_translate.ML
       
     2     Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
       
     3     Author:     Kong W. Susanto, Cambridge University Computer Laboratory
       
     4     Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
       
     5     Author:     Jasmin Blanchette, TU Muenchen
       
     6 
       
     7 Translation of HOL to FOL for Metis.
       
     8 *)
       
     9 
       
    10 signature METIS_TRANSLATE =
       
    11 sig
       
    12   type name = string * string
       
    13   datatype type_literal =
       
    14     TyLitVar of name * name |
       
    15     TyLitFree of name * name
       
    16   datatype arLit =
       
    17     TConsLit of name * name * name list |
       
    18     TVarLit of name * name
       
    19   datatype arity_clause =
       
    20     ArityClause of {name: string, conclLit: arLit, premLits: arLit list}
       
    21   datatype class_rel_clause =
       
    22     ClassRelClause of {name: string, subclass: name, superclass: name}
       
    23   datatype combtyp =
       
    24     CombTVar of name |
       
    25     CombTFree of name |
       
    26     CombType of name * combtyp list
       
    27   datatype combterm =
       
    28     CombConst of name * combtyp * combtyp list (* Const and Free *) |
       
    29     CombVar of name * combtyp |
       
    30     CombApp of combterm * combterm
       
    31   datatype fol_literal = FOLLiteral of bool * combterm
       
    32 
       
    33   datatype mode = FO | HO | FT
       
    34   type logic_map =
       
    35     {axioms: (Metis_Thm.thm * thm) list,
       
    36      tfrees: type_literal list,
       
    37      old_skolems: (string * term) list}
       
    38 
       
    39   val type_wrapper_name : string
       
    40   val bound_var_prefix : string
       
    41   val schematic_var_prefix: string
       
    42   val fixed_var_prefix: string
       
    43   val tvar_prefix: string
       
    44   val tfree_prefix: string
       
    45   val const_prefix: string
       
    46   val type_const_prefix: string
       
    47   val class_prefix: string
       
    48   val new_skolem_const_prefix : string
       
    49   val invert_const: string -> string
       
    50   val ascii_of: string -> string
       
    51   val unascii_of: string -> string
       
    52   val strip_prefix_and_unascii: string -> string -> string option
       
    53   val make_bound_var : string -> string
       
    54   val make_schematic_var : string * int -> string
       
    55   val make_fixed_var : string -> string
       
    56   val make_schematic_type_var : string * int -> string
       
    57   val make_fixed_type_var : string -> string
       
    58   val make_fixed_const : string -> string
       
    59   val make_fixed_type_const : string -> string
       
    60   val make_type_class : string -> string
       
    61   val num_type_args: theory -> string -> int
       
    62   val new_skolem_var_from_const: string -> indexname
       
    63   val type_literals_for_types : typ list -> type_literal list
       
    64   val make_class_rel_clauses :
       
    65     theory -> class list -> class list -> class_rel_clause list
       
    66   val make_arity_clauses :
       
    67     theory -> string list -> class list -> class list * arity_clause list
       
    68   val combtyp_of : combterm -> combtyp
       
    69   val strip_combterm_comb : combterm -> combterm * combterm list
       
    70   val combterm_from_term :
       
    71     theory -> int -> (string * typ) list -> term -> combterm * typ list
       
    72   val reveal_old_skolem_terms : (string * term) list -> term -> term
       
    73   val tfree_classes_of_terms : term list -> string list
       
    74   val tvar_classes_of_terms : term list -> string list
       
    75   val type_consts_of_terms : theory -> term list -> string list
       
    76   val string_of_mode : mode -> string
       
    77   val build_logic_map :
       
    78     mode -> Proof.context -> bool -> thm list -> thm list list
       
    79     -> mode * logic_map
       
    80 end
       
    81 
       
    82 structure Metis_Translate : METIS_TRANSLATE =
       
    83 struct
       
    84 
       
    85 val type_wrapper_name = "ti"
       
    86 
       
    87 val bound_var_prefix = "B_"
       
    88 val schematic_var_prefix = "V_"
       
    89 val fixed_var_prefix = "v_"
       
    90 
       
    91 val tvar_prefix = "T_";
       
    92 val tfree_prefix = "t_";
       
    93 
       
    94 val const_prefix = "c_";
       
    95 val type_const_prefix = "tc_";
       
    96 val class_prefix = "class_";
       
    97 
       
    98 val skolem_const_prefix = "Sledgehammer" ^ Long_Name.separator ^ "Sko"
       
    99 val old_skolem_const_prefix = skolem_const_prefix ^ "o"
       
   100 val new_skolem_const_prefix = skolem_const_prefix ^ "n"
       
   101 
       
   102 fun union_all xss = fold (union (op =)) xss []
       
   103 
       
   104 (* Readable names for the more common symbolic functions. Do not mess with the
       
   105    last nine entries of the table unless you know what you are doing. *)
       
   106 val const_trans_table =
       
   107   Symtab.make [(@{type_name Product_Type.prod}, "prod"),
       
   108                (@{type_name Sum_Type.sum}, "sum"),
       
   109                (@{const_name HOL.eq}, "equal"),
       
   110                (@{const_name HOL.conj}, "and"),
       
   111                (@{const_name HOL.disj}, "or"),
       
   112                (@{const_name HOL.implies}, "implies"),
       
   113                (@{const_name Set.member}, "member"),
       
   114                (@{const_name fequal}, "fequal"),
       
   115                (@{const_name COMBI}, "COMBI"),
       
   116                (@{const_name COMBK}, "COMBK"),
       
   117                (@{const_name COMBB}, "COMBB"),
       
   118                (@{const_name COMBC}, "COMBC"),
       
   119                (@{const_name COMBS}, "COMBS"),
       
   120                (@{const_name True}, "True"),
       
   121                (@{const_name False}, "False"),
       
   122                (@{const_name If}, "If")]
       
   123 
       
   124 (* Invert the table of translations between Isabelle and ATPs. *)
       
   125 val const_trans_table_inv =
       
   126   Symtab.update ("fequal", @{const_name HOL.eq})
       
   127                 (Symtab.make (map swap (Symtab.dest const_trans_table)))
       
   128 
       
   129 val invert_const = perhaps (Symtab.lookup const_trans_table_inv)
       
   130 
       
   131 (*Escaping of special characters.
       
   132   Alphanumeric characters are left unchanged.
       
   133   The character _ goes to __
       
   134   Characters in the range ASCII space to / go to _A to _P, respectively.
       
   135   Other characters go to _nnn where nnn is the decimal ASCII code.*)
       
   136 val A_minus_space = Char.ord #"A" - Char.ord #" ";
       
   137 
       
   138 fun stringN_of_int 0 _ = ""
       
   139   | stringN_of_int k n = stringN_of_int (k-1) (n div 10) ^ Int.toString (n mod 10);
       
   140 
       
   141 fun ascii_of_c c =
       
   142   if Char.isAlphaNum c then String.str c
       
   143   else if c = #"_" then "__"
       
   144   else if #" " <= c andalso c <= #"/"
       
   145        then "_" ^ String.str (Char.chr (Char.ord c + A_minus_space))
       
   146   else ("_" ^ stringN_of_int 3 (Char.ord c))  (*fixed width, in case more digits follow*)
       
   147 
       
   148 val ascii_of = String.translate ascii_of_c;
       
   149 
       
   150 (** Remove ASCII armouring from names in proof files **)
       
   151 
       
   152 (*We don't raise error exceptions because this code can run inside the watcher.
       
   153   Also, the errors are "impossible" (hah!)*)
       
   154 fun unascii_aux rcs [] = String.implode(rev rcs)
       
   155   | unascii_aux rcs [#"_"] = unascii_aux (#"_"::rcs) []  (*ERROR*)
       
   156       (*Three types of _ escapes: __, _A to _P, _nnn*)
       
   157   | unascii_aux rcs (#"_" :: #"_" :: cs) = unascii_aux (#"_"::rcs) cs
       
   158   | unascii_aux rcs (#"_" :: c :: cs) =
       
   159       if #"A" <= c andalso c<= #"P"  (*translation of #" " to #"/"*)
       
   160       then unascii_aux (Char.chr(Char.ord c - A_minus_space) :: rcs) cs
       
   161       else
       
   162         let val digits = List.take (c::cs, 3) handle Subscript => []
       
   163         in
       
   164             case Int.fromString (String.implode digits) of
       
   165                 NONE => unascii_aux (c:: #"_"::rcs) cs  (*ERROR*)
       
   166               | SOME n => unascii_aux (Char.chr n :: rcs) (List.drop (cs, 2))
       
   167         end
       
   168   | unascii_aux rcs (c::cs) = unascii_aux (c::rcs) cs
       
   169 val unascii_of = unascii_aux [] o String.explode
       
   170 
       
   171 (* If string s has the prefix s1, return the result of deleting it,
       
   172    un-ASCII'd. *)
       
   173 fun strip_prefix_and_unascii s1 s =
       
   174   if String.isPrefix s1 s then
       
   175     SOME (unascii_of (String.extract (s, size s1, NONE)))
       
   176   else
       
   177     NONE
       
   178 
       
   179 (*Remove the initial ' character from a type variable, if it is present*)
       
   180 fun trim_type_var s =
       
   181   if s <> "" andalso String.sub(s,0) = #"'" then String.extract(s,1,NONE)
       
   182   else error ("trim_type: Malformed type variable encountered: " ^ s);
       
   183 
       
   184 fun ascii_of_indexname (v,0) = ascii_of v
       
   185   | ascii_of_indexname (v,i) = ascii_of v ^ "_" ^ Int.toString i;
       
   186 
       
   187 fun make_bound_var x = bound_var_prefix ^ ascii_of x
       
   188 fun make_schematic_var v = schematic_var_prefix ^ ascii_of_indexname v
       
   189 fun make_fixed_var x = fixed_var_prefix ^ ascii_of x
       
   190 
       
   191 fun make_schematic_type_var (x,i) =
       
   192       tvar_prefix ^ (ascii_of_indexname (trim_type_var x,i));
       
   193 fun make_fixed_type_var x = tfree_prefix ^ (ascii_of (trim_type_var x));
       
   194 
       
   195 fun lookup_const c =
       
   196   case Symtab.lookup const_trans_table c of
       
   197     SOME c' => c'
       
   198   | NONE => ascii_of c
       
   199 
       
   200 (* HOL.eq MUST BE "equal" because it's built into ATPs. *)
       
   201 fun make_fixed_const @{const_name HOL.eq} = "equal"
       
   202   | make_fixed_const c = const_prefix ^ lookup_const c
       
   203 
       
   204 fun make_fixed_type_const c = type_const_prefix ^ lookup_const c
       
   205 
       
   206 fun make_type_class clas = class_prefix ^ ascii_of clas;
       
   207 
       
   208 (* The number of type arguments of a constant, zero if it's monomorphic. For
       
   209    (instances of) Skolem pseudoconstants, this information is encoded in the
       
   210    constant name. *)
       
   211 fun num_type_args thy s =
       
   212   if String.isPrefix skolem_const_prefix s then
       
   213     s |> space_explode Long_Name.separator |> List.last |> Int.fromString |> the
       
   214   else
       
   215     (s, Sign.the_const_type thy s) |> Sign.const_typargs thy |> length
       
   216 
       
   217 fun new_skolem_var_from_const s =
       
   218   let
       
   219     val ss = s |> space_explode Long_Name.separator
       
   220     val n = length ss
       
   221   in (nth ss (n - 2), nth ss (n - 3) |> Int.fromString |> the) end
       
   222 
       
   223 
       
   224 (**** Definitions and functions for FOL clauses for TPTP format output ****)
       
   225 
       
   226 type name = string * string
       
   227 
       
   228 (**** Isabelle FOL clauses ****)
       
   229 
       
   230 (* The first component is the type class; the second is a TVar or TFree. *)
       
   231 datatype type_literal =
       
   232   TyLitVar of name * name |
       
   233   TyLitFree of name * name
       
   234 
       
   235 (*Make literals for sorted type variables*)
       
   236 fun sorts_on_typs_aux (_, [])   = []
       
   237   | sorts_on_typs_aux ((x,i),  s::ss) =
       
   238       let val sorts = sorts_on_typs_aux ((x,i), ss)
       
   239       in
       
   240           if s = "HOL.type" then sorts
       
   241           else if i = ~1 then TyLitFree (`make_type_class s, `make_fixed_type_var x) :: sorts
       
   242           else TyLitVar (`make_type_class s, (make_schematic_type_var (x,i), x)) :: sorts
       
   243       end;
       
   244 
       
   245 fun sorts_on_typs (TFree (a,s)) = sorts_on_typs_aux ((a,~1),s)
       
   246   | sorts_on_typs (TVar (v,s))  = sorts_on_typs_aux (v,s);
       
   247 
       
   248 (*Given a list of sorted type variables, return a list of type literals.*)
       
   249 fun type_literals_for_types Ts =
       
   250   fold (union (op =)) (map sorts_on_typs Ts) []
       
   251 
       
   252 (** make axiom and conjecture clauses. **)
       
   253 
       
   254 (**** Isabelle arities ****)
       
   255 
       
   256 datatype arLit =
       
   257   TConsLit of name * name * name list |
       
   258   TVarLit of name * name
       
   259 
       
   260 datatype arity_clause =
       
   261   ArityClause of {name: string, conclLit: arLit, premLits: arLit list}
       
   262 
       
   263 
       
   264 fun gen_TVars 0 = []
       
   265   | gen_TVars n = ("T_" ^ Int.toString n) :: gen_TVars (n-1);
       
   266 
       
   267 fun pack_sort(_,[])  = []
       
   268   | pack_sort(tvar, "HOL.type"::srt) = pack_sort (tvar, srt)   (*IGNORE sort "type"*)
       
   269   | pack_sort(tvar, cls::srt) =
       
   270     (`make_type_class cls, (tvar, tvar)) :: pack_sort (tvar, srt)
       
   271 
       
   272 (*Arity of type constructor tcon :: (arg1,...,argN)res*)
       
   273 fun make_axiom_arity_clause (tcons, name, (cls,args)) =
       
   274   let
       
   275     val tvars = gen_TVars (length args)
       
   276     val tvars_srts = ListPair.zip (tvars, args)
       
   277   in
       
   278     ArityClause {name = name,
       
   279                  conclLit = TConsLit (`make_type_class cls,
       
   280                                       `make_fixed_type_const tcons,
       
   281                                       tvars ~~ tvars),
       
   282                  premLits = map TVarLit (union_all (map pack_sort tvars_srts))}
       
   283   end
       
   284 
       
   285 
       
   286 (**** Isabelle class relations ****)
       
   287 
       
   288 datatype class_rel_clause =
       
   289   ClassRelClause of {name: string, subclass: name, superclass: name}
       
   290 
       
   291 (*Generate all pairs (sub,super) such that sub is a proper subclass of super in theory thy.*)
       
   292 fun class_pairs _ [] _ = []
       
   293   | class_pairs thy subs supers =
       
   294       let
       
   295         val class_less = Sorts.class_less (Sign.classes_of thy)
       
   296         fun add_super sub super = class_less (sub, super) ? cons (sub, super)
       
   297         fun add_supers sub = fold (add_super sub) supers
       
   298       in fold add_supers subs [] end
       
   299 
       
   300 fun make_class_rel_clause (sub,super) =
       
   301   ClassRelClause {name = sub ^ "_" ^ super,
       
   302                   subclass = `make_type_class sub,
       
   303                   superclass = `make_type_class super}
       
   304 
       
   305 fun make_class_rel_clauses thy subs supers =
       
   306   map make_class_rel_clause (class_pairs thy subs supers);
       
   307 
       
   308 
       
   309 (** Isabelle arities **)
       
   310 
       
   311 fun arity_clause _ _ (_, []) = []
       
   312   | arity_clause seen n (tcons, ("HOL.type",_)::ars) =  (*ignore*)
       
   313       arity_clause seen n (tcons,ars)
       
   314   | arity_clause seen n (tcons, (ar as (class,_)) :: ars) =
       
   315       if member (op =) seen class then (*multiple arities for the same tycon, class pair*)
       
   316           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class ^ "_" ^ Int.toString n, ar) ::
       
   317           arity_clause seen (n+1) (tcons,ars)
       
   318       else
       
   319           make_axiom_arity_clause (tcons, lookup_const tcons ^ "_" ^ class, ar) ::
       
   320           arity_clause (class::seen) n (tcons,ars)
       
   321 
       
   322 fun multi_arity_clause [] = []
       
   323   | multi_arity_clause ((tcons, ars) :: tc_arlists) =
       
   324       arity_clause [] 1 (tcons, ars) @ multi_arity_clause tc_arlists
       
   325 
       
   326 (*Generate all pairs (tycon,class,sorts) such that tycon belongs to class in theory thy
       
   327   provided its arguments have the corresponding sorts.*)
       
   328 fun type_class_pairs thy tycons classes =
       
   329   let val alg = Sign.classes_of thy
       
   330       fun domain_sorts tycon = Sorts.mg_domain alg tycon o single
       
   331       fun add_class tycon class =
       
   332         cons (class, domain_sorts tycon class)
       
   333         handle Sorts.CLASS_ERROR _ => I
       
   334       fun try_classes tycon = (tycon, fold (add_class tycon) classes [])
       
   335   in  map try_classes tycons  end;
       
   336 
       
   337 (*Proving one (tycon, class) membership may require proving others, so iterate.*)
       
   338 fun iter_type_class_pairs _ _ [] = ([], [])
       
   339   | iter_type_class_pairs thy tycons classes =
       
   340       let val cpairs = type_class_pairs thy tycons classes
       
   341           val newclasses = union_all (union_all (union_all (map (map #2 o #2) cpairs)))
       
   342             |> subtract (op =) classes |> subtract (op =) HOLogic.typeS
       
   343           val (classes', cpairs') = iter_type_class_pairs thy tycons newclasses
       
   344       in (union (op =) classes' classes, union (op =) cpairs' cpairs) end;
       
   345 
       
   346 fun make_arity_clauses thy tycons classes =
       
   347   let val (classes', cpairs) = iter_type_class_pairs thy tycons classes
       
   348   in  (classes', multi_arity_clause cpairs)  end;
       
   349 
       
   350 datatype combtyp =
       
   351   CombTVar of name |
       
   352   CombTFree of name |
       
   353   CombType of name * combtyp list
       
   354 
       
   355 datatype combterm =
       
   356   CombConst of name * combtyp * combtyp list (* Const and Free *) |
       
   357   CombVar of name * combtyp |
       
   358   CombApp of combterm * combterm
       
   359 
       
   360 datatype fol_literal = FOLLiteral of bool * combterm
       
   361 
       
   362 (*********************************************************************)
       
   363 (* convert a clause with type Term.term to a clause with type clause *)
       
   364 (*********************************************************************)
       
   365 
       
   366 (*Result of a function type; no need to check that the argument type matches.*)
       
   367 fun result_type (CombType (_, [_, tp2])) = tp2
       
   368   | result_type _ = raise Fail "non-function type"
       
   369 
       
   370 fun combtyp_of (CombConst (_, tp, _)) = tp
       
   371   | combtyp_of (CombVar (_, tp)) = tp
       
   372   | combtyp_of (CombApp (t1, _)) = result_type (combtyp_of t1)
       
   373 
       
   374 (*gets the head of a combinator application, along with the list of arguments*)
       
   375 fun strip_combterm_comb u =
       
   376     let fun stripc (CombApp(t,u), ts) = stripc (t, u::ts)
       
   377         |   stripc  x =  x
       
   378     in stripc(u,[]) end
       
   379 
       
   380 fun combtype_of (Type (a, Ts)) =
       
   381     let val (folTypes, ts) = combtypes_of Ts in
       
   382       (CombType (`make_fixed_type_const a, folTypes), ts)
       
   383     end
       
   384   | combtype_of (tp as TFree (a, _)) = (CombTFree (`make_fixed_type_var a), [tp])
       
   385   | combtype_of (tp as TVar (x, _)) =
       
   386     (CombTVar (make_schematic_type_var x, string_of_indexname x), [tp])
       
   387 and combtypes_of Ts =
       
   388   let val (folTyps, ts) = ListPair.unzip (map combtype_of Ts) in
       
   389     (folTyps, union_all ts)
       
   390   end
       
   391 
       
   392 (* same as above, but no gathering of sort information *)
       
   393 fun simple_combtype_of (Type (a, Ts)) =
       
   394     CombType (`make_fixed_type_const a, map simple_combtype_of Ts)
       
   395   | simple_combtype_of (TFree (a, _)) = CombTFree (`make_fixed_type_var a)
       
   396   | simple_combtype_of (TVar (x, _)) =
       
   397     CombTVar (make_schematic_type_var x, string_of_indexname x)
       
   398 
       
   399 fun new_skolem_const_name th_no s num_T_args =
       
   400   [new_skolem_const_prefix, string_of_int th_no, s, string_of_int num_T_args]
       
   401   |> space_implode Long_Name.separator
       
   402 
       
   403 (* Converts a term (with combinators) into a combterm. Also accummulates sort
       
   404    infomation. *)
       
   405 fun combterm_from_term thy th_no bs (P $ Q) =
       
   406       let val (P', tsP) = combterm_from_term thy th_no bs P
       
   407           val (Q', tsQ) = combterm_from_term thy th_no bs Q
       
   408       in  (CombApp (P', Q'), union (op =) tsP tsQ)  end
       
   409   | combterm_from_term thy _ _ (Const (c, T)) =
       
   410       let
       
   411         val (tp, ts) = combtype_of T
       
   412         val tvar_list =
       
   413           (if String.isPrefix old_skolem_const_prefix c then
       
   414              [] |> Term.add_tvarsT T |> map TVar
       
   415            else
       
   416              (c, T) |> Sign.const_typargs thy)
       
   417           |> map simple_combtype_of
       
   418         val c' = CombConst (`make_fixed_const c, tp, tvar_list)
       
   419       in  (c',ts)  end
       
   420   | combterm_from_term _ _ _ (Free (v, T)) =
       
   421       let val (tp, ts) = combtype_of T
       
   422           val v' = CombConst (`make_fixed_var v, tp, [])
       
   423       in  (v',ts)  end
       
   424   | combterm_from_term _ th_no _ (Var (v as (s, _), T)) =
       
   425     let
       
   426       val (tp, ts) = combtype_of T
       
   427       val v' =
       
   428         if String.isPrefix Meson_Clausify.new_skolem_var_prefix s then
       
   429           let
       
   430             val tys = T |> strip_type |> swap |> op ::
       
   431             val s' = new_skolem_const_name th_no s (length tys)
       
   432           in
       
   433             CombConst (`make_fixed_const s', tp, map simple_combtype_of tys)
       
   434           end
       
   435         else
       
   436           CombVar ((make_schematic_var v, string_of_indexname v), tp)
       
   437     in (v', ts) end
       
   438   | combterm_from_term _ _ bs (Bound j) =
       
   439       let
       
   440         val (s, T) = nth bs j
       
   441         val (tp, ts) = combtype_of T
       
   442         val v' = CombConst (`make_bound_var s, tp, [])
       
   443       in (v', ts) end
       
   444   | combterm_from_term _ _ _ (Abs _) = raise Fail "HOL clause: Abs"
       
   445 
       
   446 fun predicate_of thy th_no ((@{const Not} $ P), pos) =
       
   447     predicate_of thy th_no (P, not pos)
       
   448   | predicate_of thy th_no (t, pos) =
       
   449     (combterm_from_term thy th_no [] (Envir.eta_contract t), pos)
       
   450 
       
   451 fun literals_of_term1 args thy th_no (@{const Trueprop} $ P) =
       
   452     literals_of_term1 args thy th_no P
       
   453   | literals_of_term1 args thy th_no (@{const HOL.disj} $ P $ Q) =
       
   454     literals_of_term1 (literals_of_term1 args thy th_no P) thy th_no Q
       
   455   | literals_of_term1 (lits, ts) thy th_no P =
       
   456     let val ((pred, ts'), pol) = predicate_of thy th_no (P, true) in
       
   457       (FOLLiteral (pol, pred) :: lits, union (op =) ts ts')
       
   458     end
       
   459 val literals_of_term = literals_of_term1 ([], [])
       
   460 
       
   461 fun old_skolem_const_name i j num_T_args =
       
   462   old_skolem_const_prefix ^ Long_Name.separator ^
       
   463   (space_implode Long_Name.separator (map Int.toString [i, j, num_T_args]))
       
   464 
       
   465 fun conceal_old_skolem_terms i old_skolems t =
       
   466   if exists_Const (curry (op =) @{const_name skolem} o fst) t then
       
   467     let
       
   468       fun aux old_skolems
       
   469               (t as (Const (@{const_name skolem}, Type (_, [_, T])) $ _)) =
       
   470           let
       
   471             val (old_skolems, s) =
       
   472               if i = ~1 then
       
   473                 (old_skolems, @{const_name undefined})
       
   474               else case AList.find (op aconv) old_skolems t of
       
   475                 s :: _ => (old_skolems, s)
       
   476               | [] =>
       
   477                 let
       
   478                   val s = old_skolem_const_name i (length old_skolems)
       
   479                                                 (length (Term.add_tvarsT T []))
       
   480                 in ((s, t) :: old_skolems, s) end
       
   481           in (old_skolems, Const (s, T)) end
       
   482         | aux old_skolems (t1 $ t2) =
       
   483           let
       
   484             val (old_skolems, t1) = aux old_skolems t1
       
   485             val (old_skolems, t2) = aux old_skolems t2
       
   486           in (old_skolems, t1 $ t2) end
       
   487         | aux old_skolems (Abs (s, T, t')) =
       
   488           let val (old_skolems, t') = aux old_skolems t' in
       
   489             (old_skolems, Abs (s, T, t'))
       
   490           end
       
   491         | aux old_skolems t = (old_skolems, t)
       
   492     in aux old_skolems t end
       
   493   else
       
   494     (old_skolems, t)
       
   495 
       
   496 fun reveal_old_skolem_terms old_skolems =
       
   497   map_aterms (fn t as Const (s, _) =>
       
   498                  if String.isPrefix old_skolem_const_prefix s then
       
   499                    AList.lookup (op =) old_skolems s |> the
       
   500                    |> map_types Type_Infer.paramify_vars
       
   501                  else
       
   502                    t
       
   503                | t => t)
       
   504 
       
   505 
       
   506 (***************************************************************)
       
   507 (* Type Classes Present in the Axiom or Conjecture Clauses     *)
       
   508 (***************************************************************)
       
   509 
       
   510 fun set_insert (x, s) = Symtab.update (x, ()) s
       
   511 
       
   512 fun add_classes (sorts, cset) = List.foldl set_insert cset (flat sorts)
       
   513 
       
   514 (*Remove this trivial type class*)
       
   515 fun delete_type cset = Symtab.delete_safe (the_single @{sort HOL.type}) cset;
       
   516 
       
   517 fun tfree_classes_of_terms ts =
       
   518   let val sorts_list = map (map #2 o OldTerm.term_tfrees) ts
       
   519   in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
       
   520 
       
   521 fun tvar_classes_of_terms ts =
       
   522   let val sorts_list = map (map #2 o OldTerm.term_tvars) ts
       
   523   in  Symtab.keys (delete_type (List.foldl add_classes Symtab.empty sorts_list))  end;
       
   524 
       
   525 (*fold type constructors*)
       
   526 fun fold_type_consts f (Type (a, Ts)) x = fold (fold_type_consts f) Ts (f (a,x))
       
   527   | fold_type_consts _ _ x = x;
       
   528 
       
   529 (*Type constructors used to instantiate overloaded constants are the only ones needed.*)
       
   530 fun add_type_consts_in_term thy =
       
   531   let
       
   532     fun aux (Const x) =
       
   533         fold (fold_type_consts set_insert) (Sign.const_typargs thy x)
       
   534       | aux (Abs (_, _, u)) = aux u
       
   535       | aux (Const (@{const_name skolem}, _) $ _) = I
       
   536       | aux (t $ u) = aux t #> aux u
       
   537       | aux _ = I
       
   538   in aux end
       
   539 
       
   540 fun type_consts_of_terms thy ts =
       
   541   Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
       
   542 
       
   543 (* ------------------------------------------------------------------------- *)
       
   544 (* HOL to FOL  (Isabelle to Metis)                                           *)
       
   545 (* ------------------------------------------------------------------------- *)
       
   546 
       
   547 datatype mode = FO | HO | FT  (* first-order, higher-order, fully-typed *)
       
   548 
       
   549 fun string_of_mode FO = "FO"
       
   550   | string_of_mode HO = "HO"
       
   551   | string_of_mode FT = "FT"
       
   552 
       
   553 fun fn_isa_to_met_sublevel "equal" = "=" (* FIXME: "c_fequal" *)
       
   554   | fn_isa_to_met_sublevel x = x
       
   555 fun fn_isa_to_met_toplevel "equal" = "="
       
   556   | fn_isa_to_met_toplevel x = x
       
   557 
       
   558 fun metis_lit b c args = (b, (c, args));
       
   559 
       
   560 fun metis_term_from_combtyp (CombTVar (s, _)) = Metis_Term.Var s
       
   561   | metis_term_from_combtyp (CombTFree (s, _)) = Metis_Term.Fn (s, [])
       
   562   | metis_term_from_combtyp (CombType ((s, _), tps)) =
       
   563     Metis_Term.Fn (s, map metis_term_from_combtyp tps);
       
   564 
       
   565 (*These two functions insert type literals before the real literals. That is the
       
   566   opposite order from TPTP linkup, but maybe OK.*)
       
   567 
       
   568 fun hol_term_to_fol_FO tm =
       
   569   case strip_combterm_comb tm of
       
   570       (CombConst ((c, _), _, tys), tms) =>
       
   571         let val tyargs = map metis_term_from_combtyp tys
       
   572             val args   = map hol_term_to_fol_FO tms
       
   573         in Metis_Term.Fn (c, tyargs @ args) end
       
   574     | (CombVar ((v, _), _), []) => Metis_Term.Var v
       
   575     | _ => raise Fail "non-first-order combterm"
       
   576 
       
   577 fun hol_term_to_fol_HO (CombConst ((a, _), _, tylist)) =
       
   578       Metis_Term.Fn (fn_isa_to_met_sublevel a, map metis_term_from_combtyp tylist)
       
   579   | hol_term_to_fol_HO (CombVar ((s, _), _)) = Metis_Term.Var s
       
   580   | hol_term_to_fol_HO (CombApp (tm1, tm2)) =
       
   581        Metis_Term.Fn (".", map hol_term_to_fol_HO [tm1, tm2]);
       
   582 
       
   583 (*The fully-typed translation, to avoid type errors*)
       
   584 fun wrap_type (tm, ty) =
       
   585   Metis_Term.Fn (type_wrapper_name, [tm, metis_term_from_combtyp ty])
       
   586 
       
   587 fun hol_term_to_fol_FT (CombVar ((s, _), ty)) = wrap_type (Metis_Term.Var s, ty)
       
   588   | hol_term_to_fol_FT (CombConst((a, _), ty, _)) =
       
   589       wrap_type (Metis_Term.Fn(fn_isa_to_met_sublevel a, []), ty)
       
   590   | hol_term_to_fol_FT (tm as CombApp(tm1,tm2)) =
       
   591        wrap_type (Metis_Term.Fn(".", map hol_term_to_fol_FT [tm1,tm2]),
       
   592                   combtyp_of tm)
       
   593 
       
   594 fun hol_literal_to_fol FO (FOLLiteral (pos, tm)) =
       
   595       let val (CombConst((p, _), _, tys), tms) = strip_combterm_comb tm
       
   596           val tylits = if p = "equal" then [] else map metis_term_from_combtyp tys
       
   597           val lits = map hol_term_to_fol_FO tms
       
   598       in metis_lit pos (fn_isa_to_met_toplevel p) (tylits @ lits) end
       
   599   | hol_literal_to_fol HO (FOLLiteral (pos, tm)) =
       
   600      (case strip_combterm_comb tm of
       
   601           (CombConst(("equal", _), _, _), tms) =>
       
   602             metis_lit pos "=" (map hol_term_to_fol_HO tms)
       
   603         | _ => metis_lit pos "{}" [hol_term_to_fol_HO tm])   (*hBOOL*)
       
   604   | hol_literal_to_fol FT (FOLLiteral (pos, tm)) =
       
   605      (case strip_combterm_comb tm of
       
   606           (CombConst(("equal", _), _, _), tms) =>
       
   607             metis_lit pos "=" (map hol_term_to_fol_FT tms)
       
   608         | _ => metis_lit pos "{}" [hol_term_to_fol_FT tm])   (*hBOOL*);
       
   609 
       
   610 fun literals_of_hol_term thy th_no mode t =
       
   611       let val (lits, types_sorts) = literals_of_term thy th_no t
       
   612       in  (map (hol_literal_to_fol mode) lits, types_sorts) end;
       
   613 
       
   614 (*Sign should be "true" for conjecture type constraints, "false" for type lits in clauses.*)
       
   615 fun metis_of_type_literals pos (TyLitVar ((s, _), (s', _))) =
       
   616     metis_lit pos s [Metis_Term.Var s']
       
   617   | metis_of_type_literals pos (TyLitFree ((s, _), (s', _))) =
       
   618     metis_lit pos s [Metis_Term.Fn (s',[])]
       
   619 
       
   620 fun default_sort _ (TVar _) = false
       
   621   | default_sort ctxt (TFree (x, s)) = (s = the_default [] (Variable.def_sort ctxt (x, ~1)));
       
   622 
       
   623 fun metis_of_tfree tf =
       
   624   Metis_Thm.axiom (Metis_LiteralSet.singleton (metis_of_type_literals true tf));
       
   625 
       
   626 fun hol_thm_to_fol is_conjecture th_no ctxt type_lits mode j old_skolems th =
       
   627   let
       
   628     val thy = ProofContext.theory_of ctxt
       
   629     val (old_skolems, (mlits, types_sorts)) =
       
   630      th |> prop_of |> Logic.strip_imp_concl
       
   631         |> conceal_old_skolem_terms j old_skolems
       
   632         ||> (HOLogic.dest_Trueprop #> literals_of_hol_term thy th_no mode)
       
   633   in
       
   634     if is_conjecture then
       
   635       (Metis_Thm.axiom (Metis_LiteralSet.fromList mlits),
       
   636        type_literals_for_types types_sorts, old_skolems)
       
   637     else
       
   638       let
       
   639         val tylits = filter_out (default_sort ctxt) types_sorts
       
   640                      |> type_literals_for_types
       
   641         val mtylits =
       
   642           if type_lits then map (metis_of_type_literals false) tylits else []
       
   643       in
       
   644         (Metis_Thm.axiom (Metis_LiteralSet.fromList(mtylits @ mlits)), [],
       
   645          old_skolems)
       
   646       end
       
   647   end;
       
   648 
       
   649 val helpers =
       
   650   [("c_COMBI", (false, map (`I) @{thms COMBI_def})),
       
   651    ("c_COMBK", (false, map (`I) @{thms COMBK_def})),
       
   652    ("c_COMBB", (false, map (`I) @{thms COMBB_def})),
       
   653    ("c_COMBC", (false, map (`I) @{thms COMBC_def})),
       
   654    ("c_COMBS", (false, map (`I) @{thms COMBS_def})),
       
   655    ("c_fequal", (false, map (rpair @{thm equal_imp_equal})
       
   656                             @{thms fequal_imp_equal equal_imp_fequal})),
       
   657    ("c_True", (true, map (`I) @{thms True_or_False})),
       
   658    ("c_False", (true, map (`I) @{thms True_or_False})),
       
   659    ("c_If", (true, map (`I) @{thms if_True if_False True_or_False}))]
       
   660 
       
   661 (* ------------------------------------------------------------------------- *)
       
   662 (* Logic maps manage the interface between HOL and first-order logic.        *)
       
   663 (* ------------------------------------------------------------------------- *)
       
   664 
       
   665 type logic_map =
       
   666   {axioms: (Metis_Thm.thm * thm) list,
       
   667    tfrees: type_literal list,
       
   668    old_skolems: (string * term) list}
       
   669 
       
   670 fun is_quasi_fol_clause thy =
       
   671   Meson.is_fol_term thy o snd o conceal_old_skolem_terms ~1 [] o prop_of
       
   672 
       
   673 (*Extract TFree constraints from context to include as conjecture clauses*)
       
   674 fun init_tfrees ctxt =
       
   675   let fun add ((a,i),s) Ts = if i = ~1 then TFree(a,s) :: Ts else Ts in
       
   676     Vartab.fold add (#2 (Variable.constraints_of ctxt)) []
       
   677     |> type_literals_for_types
       
   678   end;
       
   679 
       
   680 (*Insert non-logical axioms corresponding to all accumulated TFrees*)
       
   681 fun add_tfrees {axioms, tfrees, old_skolems} : logic_map =
       
   682      {axioms = map (rpair TrueI o metis_of_tfree) (distinct (op =) tfrees) @
       
   683                axioms,
       
   684       tfrees = tfrees, old_skolems = old_skolems}
       
   685 
       
   686 (*transform isabelle type / arity clause to metis clause *)
       
   687 fun add_type_thm [] lmap = lmap
       
   688   | add_type_thm ((ith, mth) :: cls) {axioms, tfrees, old_skolems} =
       
   689       add_type_thm cls {axioms = (mth, ith) :: axioms, tfrees = tfrees,
       
   690                         old_skolems = old_skolems}
       
   691 
       
   692 fun const_in_metis c (pred, tm_list) =
       
   693   let
       
   694     fun in_mterm (Metis_Term.Var _) = false
       
   695       | in_mterm (Metis_Term.Fn (".", tm_list)) = exists in_mterm tm_list
       
   696       | in_mterm (Metis_Term.Fn (nm, tm_list)) = c=nm orelse exists in_mterm tm_list
       
   697   in  c = pred orelse exists in_mterm tm_list  end;
       
   698 
       
   699 (* ARITY CLAUSE *)
       
   700 fun m_arity_cls (TConsLit ((c, _), (t, _), args)) =
       
   701     metis_lit true c [Metis_Term.Fn(t, map (Metis_Term.Var o fst) args)]
       
   702   | m_arity_cls (TVarLit ((c, _), (s, _))) =
       
   703     metis_lit false c [Metis_Term.Var s]
       
   704 (*TrueI is returned as the Isabelle counterpart because there isn't any.*)
       
   705 fun arity_cls (ArityClause {conclLit, premLits, ...}) =
       
   706   (TrueI,
       
   707    Metis_Thm.axiom (Metis_LiteralSet.fromList (map m_arity_cls (conclLit :: premLits))));
       
   708 
       
   709 (* CLASSREL CLAUSE *)
       
   710 fun m_class_rel_cls (subclass, _) (superclass, _) =
       
   711   [metis_lit false subclass [Metis_Term.Var "T"], metis_lit true superclass [Metis_Term.Var "T"]];
       
   712 fun class_rel_cls (ClassRelClause {subclass, superclass, ...}) =
       
   713   (TrueI, Metis_Thm.axiom (Metis_LiteralSet.fromList (m_class_rel_cls subclass superclass)));
       
   714 
       
   715 fun type_ext thy tms =
       
   716   let val subs = tfree_classes_of_terms tms
       
   717       val supers = tvar_classes_of_terms tms
       
   718       and tycons = type_consts_of_terms thy tms
       
   719       val (supers', arity_clauses) = make_arity_clauses thy tycons supers
       
   720       val class_rel_clauses = make_class_rel_clauses thy subs supers'
       
   721   in  map class_rel_cls class_rel_clauses @ map arity_cls arity_clauses
       
   722   end;
       
   723 
       
   724 (* Function to generate metis clauses, including comb and type clauses *)
       
   725 fun build_logic_map mode0 ctxt type_lits cls thss =
       
   726   let val thy = ProofContext.theory_of ctxt
       
   727       (*The modes FO and FT are sticky. HO can be downgraded to FO.*)
       
   728       fun set_mode FO = FO
       
   729         | set_mode HO =
       
   730           if forall (forall (is_quasi_fol_clause thy)) (cls :: thss) then FO
       
   731           else HO
       
   732         | set_mode FT = FT
       
   733       val mode = set_mode mode0
       
   734       (*transform isabelle clause to metis clause *)
       
   735       fun add_thm th_no is_conjecture (metis_ith, isa_ith)
       
   736                   {axioms, tfrees, old_skolems} : logic_map =
       
   737         let
       
   738           val (mth, tfree_lits, old_skolems) =
       
   739             hol_thm_to_fol is_conjecture th_no ctxt type_lits mode (length axioms)
       
   740                            old_skolems metis_ith
       
   741         in
       
   742            {axioms = (mth, Meson.make_meta_clause isa_ith) :: axioms,
       
   743             tfrees = union (op =) tfree_lits tfrees, old_skolems = old_skolems}
       
   744         end;
       
   745       val lmap = {axioms = [], tfrees = init_tfrees ctxt, old_skolems = []}
       
   746                  |> fold (add_thm 0 true o `I) cls
       
   747                  |> add_tfrees
       
   748                  |> fold (fn (th_no, ths) => fold (add_thm th_no false o `I) ths)
       
   749                          (1 upto length thss ~~ thss)
       
   750       val clause_lists = map (Metis_Thm.clause o #1) (#axioms lmap)
       
   751       fun is_used c =
       
   752         exists (Metis_LiteralSet.exists (const_in_metis c o #2)) clause_lists
       
   753       val lmap =
       
   754         if mode = FO then
       
   755           lmap
       
   756         else
       
   757           let
       
   758             val helper_ths =
       
   759               helpers |> filter (is_used o fst)
       
   760                       |> maps (fn (c, (needs_full_types, thms)) =>
       
   761                                   if not (is_used c) orelse
       
   762                                      needs_full_types andalso mode <> FT then
       
   763                                     []
       
   764                                   else
       
   765                                     thms)
       
   766           in lmap |> fold (add_thm ~1 false) helper_ths end
       
   767   in
       
   768     (mode, add_type_thm (type_ext thy (maps (map prop_of) (cls :: thss))) lmap)
       
   769   end
       
   770 
       
   771 end;