src/HOL/Relation.ML
changeset 5316 7a8975451a89
parent 5231 2a454140ae24
child 5335 07fb8999de62
equal deleted inserted replaced
5315:c9ad6bbf3a34 5316:7a8975451a89
    10 
    10 
    11 Goalw [id_def] "(a,a) : id";  
    11 Goalw [id_def] "(a,a) : id";  
    12 by (Blast_tac 1);
    12 by (Blast_tac 1);
    13 qed "idI";
    13 qed "idI";
    14 
    14 
    15 val major::prems = goalw thy [id_def]
    15 val major::prems = Goalw [id_def]
    16     "[| p: id;  !!x.[| p = (x,x) |] ==> P  \
    16     "[| p: id;  !!x.[| p = (x,x) |] ==> P  \
    17 \    |] ==>  P";  
    17 \    |] ==>  P";  
    18 by (rtac (major RS CollectE) 1);
    18 by (rtac (major RS CollectE) 1);
    19 by (etac exE 1);
    19 by (etac exE 1);
    20 by (eresolve_tac prems 1);
    20 by (eresolve_tac prems 1);
    32     "[| (a,b):s; (b,c):r |] ==> (a,c) : r O s";
    32     "[| (a,b):s; (b,c):r |] ==> (a,c) : r O s";
    33 by (Blast_tac 1);
    33 by (Blast_tac 1);
    34 qed "compI";
    34 qed "compI";
    35 
    35 
    36 (*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
    36 (*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
    37 val prems = goalw thy [comp_def]
    37 val prems = Goalw [comp_def]
    38     "[| xz : r O s;  \
    38     "[| xz : r O s;  \
    39 \       !!x y z. [| xz = (x,z);  (x,y):s;  (y,z):r |] ==> P \
    39 \       !!x y z. [| xz = (x,z);  (x,y):s;  (y,z):r |] ==> P \
    40 \    |] ==> P";
    40 \    |] ==> P";
    41 by (cut_facts_tac prems 1);
    41 by (cut_facts_tac prems 1);
    42 by (REPEAT (eresolve_tac [CollectE, splitE, exE, conjE] 1 
    42 by (REPEAT (eresolve_tac [CollectE, splitE, exE, conjE] 1 
    43      ORELSE ares_tac prems 1));
    43      ORELSE ares_tac prems 1));
    44 qed "compE";
    44 qed "compE";
    45 
    45 
    46 val prems = goal thy
    46 val prems = Goal
    47     "[| (a,c) : r O s;  \
    47     "[| (a,c) : r O s;  \
    48 \       !!y. [| (a,y):s;  (y,c):r |] ==> P \
    48 \       !!y. [| (a,y):s;  (y,c):r |] ==> P \
    49 \    |] ==> P";
    49 \    |] ==> P";
    50 by (rtac compE 1);
    50 by (rtac compE 1);
    51 by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1));
    51 by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1));
    76 by (Blast_tac 1);
    76 by (Blast_tac 1);
    77 qed "comp_subset_Sigma";
    77 qed "comp_subset_Sigma";
    78 
    78 
    79 (** Natural deduction for trans(r) **)
    79 (** Natural deduction for trans(r) **)
    80 
    80 
    81 val prems = goalw thy [trans_def]
    81 val prems = Goalw [trans_def]
    82     "(!! x y z. [| (x,y):r;  (y,z):r |] ==> (x,z):r) ==> trans(r)";
    82     "(!! x y z. [| (x,y):r;  (y,z):r |] ==> (x,z):r) ==> trans(r)";
    83 by (REPEAT (ares_tac (prems@[allI,impI]) 1));
    83 by (REPEAT (ares_tac (prems@[allI,impI]) 1));
    84 qed "transI";
    84 qed "transI";
    85 
    85 
    86 Goalw [trans_def] "[| trans(r);  (a,b):r;  (b,c):r |] ==> (a,c):r";
    86 Goalw [trans_def] "[| trans(r);  (a,b):r;  (b,c):r |] ==> (a,c):r";