src/HOL/NumberTheory/Chinese.ML
changeset 11049 7eef34adb852
parent 11048 2f4976370b7a
child 11050 ac5709ac50b9
equal deleted inserted replaced
11048:2f4976370b7a 11049:7eef34adb852
     1 (*  Title:	Chinese.ML
       
     2     ID:         $Id$
       
     3     Author:	Thomas M. Rasmussen
       
     4     Copyright	2000  University of Cambridge
       
     5 
       
     6 The Chinese Remainder Theorem for an arbitrary finite number of equations. 
       
     7 (The one-equation case is included in 'IntPrimes')
       
     8 
       
     9 Uses functions for indexing. Maybe 'funprod' and 'funsum'
       
    10 should be based on general 'fold' on indices?
       
    11 *)
       
    12 
       
    13 
       
    14 (*** funprod and funsum ***)
       
    15 
       
    16 Goal "(ALL i. i <= n --> #0 < mf i) --> #0 < funprod mf 0 n";
       
    17 by (induct_tac "n" 1);
       
    18 by Auto_tac;
       
    19 by (asm_full_simp_tac (simpset() addsimps [int_0_less_mult_iff]) 1);
       
    20 qed_spec_mp "funprod_pos";
       
    21 
       
    22 Goal "(ALL i. k<=i & i<=(k+l) --> zgcd (mf i, mf m) = #1) --> \
       
    23 \     zgcd (funprod mf k l, mf m) = #1";
       
    24 by (induct_tac "l" 1);
       
    25 by (ALLGOALS Simp_tac);
       
    26 by (REPEAT (rtac impI 1));
       
    27 by (stac zgcd_zmult_cancel 1);
       
    28 by Auto_tac;
       
    29 qed_spec_mp "funprod_zgcd";
       
    30 
       
    31 Goal "k<=i --> i<=(k+l) --> (mf i) dvd (funprod mf k l)";     
       
    32 by (induct_tac "l" 1);
       
    33 by Auto_tac;
       
    34 by (rtac zdvd_zmult2 2);
       
    35 by (rtac zdvd_zmult 3);
       
    36 by (subgoal_tac "i=k" 1);
       
    37 by (subgoal_tac "i=Suc (k + n)" 3);
       
    38 by (ALLGOALS Asm_simp_tac);
       
    39 qed_spec_mp "funprod_zdvd";
       
    40 
       
    41 Goal "(funsum f k l) mod m = (funsum (%i. (f i) mod m) k l) mod m";
       
    42 by (induct_tac "l" 1);
       
    43 by Auto_tac;
       
    44 by (rtac trans 1);
       
    45 by (rtac zmod_zadd1_eq 1);
       
    46 by (Asm_simp_tac 1);
       
    47 by (rtac (zmod_zadd_right_eq RS sym) 1);
       
    48 qed "funsum_mod";
       
    49 
       
    50 Goal "(ALL i. k<=i & i<=(k+l) --> (f i) = #0) --> (funsum f k l) = #0";
       
    51 by (induct_tac "l" 1);
       
    52 by Auto_tac;
       
    53 qed_spec_mp "funsum_zero";
       
    54 
       
    55 Goal "k<=j --> j<=(k+l) --> \
       
    56 \     (ALL i. k<=i & i<=(k+l) & i~=j --> (f i) = #0) --> \
       
    57 \     (funsum f k l) = (f j)";
       
    58 by (induct_tac "l" 1);
       
    59 by (ALLGOALS Clarify_tac);
       
    60 by (subgoal_tac "k=j" 1 THEN ALLGOALS Asm_simp_tac);
       
    61 by (case_tac "Suc (k+n) = j" 1);
       
    62 by (subgoal_tac "funsum f k n = #0" 1);
       
    63 by (rtac funsum_zero 2);
       
    64 by (subgoal_tac "f (Suc (k+n)) = #0" 3);
       
    65 by (subgoal_tac "j<=k+n" 3);
       
    66 by (arith_tac 4);
       
    67 by Auto_tac;
       
    68 qed_spec_mp "funsum_oneelem";
       
    69 
       
    70 
       
    71 (*** Chinese: Uniqueness ***)
       
    72 
       
    73 Goalw [m_cond_def,km_cond_def,lincong_sol_def]
       
    74       "[| m_cond n mf; km_cond n kf mf; \
       
    75 \         lincong_sol n kf bf mf x; lincong_sol n kf bf mf y |] \
       
    76 \     ==>  [x=y] (mod mf n)";
       
    77 by (rtac iffD1 1);
       
    78 by (res_inst_tac [("k","kf n")] zcong_cancel2 1);
       
    79 by (res_inst_tac [("b","bf n")] zcong_trans 3);
       
    80 by (stac zcong_sym 4);
       
    81 by (rtac order_less_imp_le 1);
       
    82 by (ALLGOALS Asm_simp_tac);
       
    83 val lemma = result();
       
    84 
       
    85 Goal "m_cond n mf --> km_cond n kf mf --> \
       
    86 \     lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y --> \
       
    87 \     [x=y] (mod funprod mf 0 n)";
       
    88 by (induct_tac "n" 1);
       
    89 by (ALLGOALS Simp_tac);
       
    90 by (blast_tac (claset() addIs [lemma]) 1);
       
    91 by (REPEAT (rtac impI 1));
       
    92 by (rtac zcong_zgcd_zmult_zmod 1);
       
    93 by (blast_tac (claset() addIs [lemma]) 1);
       
    94 by (stac zgcd_commute 2);
       
    95 by (rtac funprod_zgcd 2);
       
    96 by (auto_tac (claset(), 
       
    97               simpset() addsimps [m_cond_def,km_cond_def,lincong_sol_def]));  
       
    98 qed_spec_mp "zcong_funprod";
       
    99 
       
   100 
       
   101 (* Chinese: Existence *)
       
   102 
       
   103 Goal "[| 0<n; i<=n; m_cond n mf; km_cond n kf mf |] \
       
   104 \     ==> EX! x. #0<=x & x<(mf i) & \
       
   105 \                [(kf i)*(mhf mf n i)*x = bf i] (mod mf i)";
       
   106 by (rtac zcong_lineq_unique 1);
       
   107 by (stac zgcd_zmult_cancel 2);
       
   108 by (rewrite_goals_tac [m_cond_def,km_cond_def,mhf_def]);
       
   109 by (ALLGOALS Asm_simp_tac);
       
   110 by Safe_tac; 
       
   111 by (stac zgcd_zmult_cancel 3);
       
   112 by (ALLGOALS (rtac funprod_zgcd));
       
   113 by Safe_tac;
       
   114 by (ALLGOALS Asm_full_simp_tac);
       
   115 by (subgoal_tac "ia<=n" 3);
       
   116 by (arith_tac 4);
       
   117 by (subgoal_tac "i<n" 1);
       
   118 by (arith_tac 2);
       
   119 by (case_tac "i" 2);
       
   120 by (ALLGOALS Asm_full_simp_tac);
       
   121 qed "unique_xi_sol";
       
   122 
       
   123 Goalw [mhf_def] "[| 0<n; i<=n; j<=n; j~=i |] ==> (mf j) dvd (mhf mf n i)";
       
   124 by (case_tac "i=0" 1);
       
   125 by (case_tac "i=n" 2);
       
   126 by (ALLGOALS Asm_simp_tac);
       
   127 by (case_tac "j<i" 3);
       
   128 by (rtac zdvd_zmult2 3);
       
   129 by (rtac zdvd_zmult 4);
       
   130 by (ALLGOALS (rtac funprod_zdvd));
       
   131 by (ALLGOALS arith_tac);
       
   132 val lemma = result();
       
   133 
       
   134 Goalw [x_sol_def]
       
   135      "[| 0<n; i<=n |] \
       
   136 \     ==> (x_sol n kf bf mf) mod (mf i) = \
       
   137 \         (xilin_sol i n kf bf mf)*(mhf mf n i) mod (mf i)";
       
   138 by (stac funsum_mod 1);
       
   139 by (stac funsum_oneelem 1);
       
   140 by Auto_tac;
       
   141 by (stac (zdvd_iff_zmod_eq_0 RS sym) 1);
       
   142 by (rtac zdvd_zmult 1);
       
   143 by (rtac lemma 1);
       
   144 by Auto_tac;
       
   145 qed "x_sol_lin";
       
   146 
       
   147 
       
   148 (* Chinese *)
       
   149 
       
   150 Goal "[| 0<n; m_cond n mf; km_cond n kf mf |] \
       
   151 \     ==> (EX! x. #0 <= x & x < (funprod mf 0 n) & \
       
   152 \                 (lincong_sol n kf bf mf x))";
       
   153 by Safe_tac;
       
   154 by (res_inst_tac [("m","funprod mf 0 n")] zcong_zless_imp_eq 2);
       
   155 by (rtac zcong_funprod 6);
       
   156 by Auto_tac;
       
   157 by (res_inst_tac [("x","(x_sol n kf bf mf) mod (funprod mf 0 n)")] exI 1);
       
   158 by (rewtac lincong_sol_def);
       
   159 by Safe_tac;
       
   160 by (stac zcong_zmod 3);
       
   161 by (stac zmod_zmult_distrib 3);
       
   162 by (stac zmod_zdvd_zmod 3);
       
   163 by (stac x_sol_lin 5);
       
   164 by (stac (zmod_zmult_distrib RS sym) 7);
       
   165 by (stac (zcong_zmod RS sym) 7);
       
   166 by (subgoal_tac "#0<=(xilin_sol i n kf bf mf) & \
       
   167 \                (xilin_sol i n kf bf mf)<(mf i) & \
       
   168 \                [(kf i)*(mhf mf n i)*(xilin_sol i n kf bf mf) = bf i] \
       
   169 \                  (mod mf i)" 7);
       
   170 by (asm_full_simp_tac (simpset() addsimps zmult_ac) 7);
       
   171 by (rewtac xilin_sol_def);
       
   172 by (Asm_simp_tac 7);
       
   173 by (rtac (ex1_implies_ex RS someI_ex) 7);
       
   174 by (rtac unique_xi_sol 7);
       
   175 by (rtac funprod_zdvd 4);
       
   176 by (rewtac m_cond_def);
       
   177 by (rtac (funprod_pos RS pos_mod_sign) 1);
       
   178 by (rtac (funprod_pos RS pos_mod_bound) 2);
       
   179 by Auto_tac;
       
   180 qed "chinese_remainder";