doc-src/TutorialI/Misc/case_splits.thy
changeset 9844 8016321c7de1
parent 9843 cc8aa63bdad6
child 9845 1206c7615a47
equal deleted inserted replaced
9843:cc8aa63bdad6 9844:8016321c7de1
     1 (*<*)
       
     2 theory case_splits = Main:;
       
     3 (*>*)
       
     4 
       
     5 text{*
       
     6 Goals containing @{text"if"}-expressions are usually proved by case
       
     7 distinction on the condition of the @{text"if"}. For example the goal
       
     8 *}
       
     9 
       
    10 lemma "\\<forall>xs. if xs = [] then rev xs = [] else rev xs \\<noteq> []";
       
    11 
       
    12 txt{*\noindent
       
    13 can be split into
       
    14 \begin{isabelle}
       
    15 ~1.~{\isasymforall}xs.~(xs~=~[]~{\isasymlongrightarrow}~rev~xs~=~[])~{\isasymand}~(xs~{\isasymnoteq}~[]~{\isasymlongrightarrow}~rev~xs~{\isasymnoteq}~[])
       
    16 \end{isabelle}
       
    17 by a degenerate form of simplification
       
    18 *}
       
    19 
       
    20 apply(simp only: split: split_if);
       
    21 (*<*)oops;(*>*)
       
    22 
       
    23 text{*\noindent
       
    24 where no simplification rules are included (@{text"only:"} is followed by the
       
    25 empty list of theorems) but the rule \isaindexbold{split_if} for
       
    26 splitting @{text"if"}s is added (via the modifier @{text"split:"}). Because
       
    27 case-splitting on @{text"if"}s is almost always the right proof strategy, the
       
    28 simplifier performs it automatically. Try \isacommand{apply}@{text"(simp)"}
       
    29 on the initial goal above.
       
    30 
       
    31 This splitting idea generalizes from @{text"if"} to \isaindex{case}:
       
    32 *}
       
    33 
       
    34 lemma "(case xs of [] \\<Rightarrow> zs | y#ys \\<Rightarrow> y#(ys@zs)) = xs@zs";
       
    35 txt{*\noindent
       
    36 becomes
       
    37 \begin{isabelle}
       
    38 ~1.~(xs~=~[]~{\isasymlongrightarrow}~zs~=~xs~@~zs)~{\isasymand}\isanewline
       
    39 ~~~~({\isasymforall}a~list.~xs~=~a~\#~list~{\isasymlongrightarrow}~a~\#~list~@~zs~=~xs~@~zs)
       
    40 \end{isabelle}
       
    41 by typing
       
    42 *}
       
    43 
       
    44 apply(simp only: split: list.split);
       
    45 (*<*)oops;(*>*)
       
    46 
       
    47 text{*\noindent
       
    48 In contrast to @{text"if"}-expressions, the simplifier does not split
       
    49 @{text"case"}-expressions by default because this can lead to nontermination
       
    50 in case of recursive datatypes. Again, if the @{text"only:"} modifier is
       
    51 dropped, the above goal is solved,
       
    52 *}
       
    53 (*<*)
       
    54 lemma "(case xs of [] \\<Rightarrow> zs | y#ys \\<Rightarrow> y#(ys@zs)) = xs@zs";
       
    55 (*>*)
       
    56 by(simp split: list.split);
       
    57 
       
    58 text{*\noindent%
       
    59 which \isacommand{apply}@{text"(simp)"} alone will not do.
       
    60 
       
    61 In general, every datatype $t$ comes with a theorem
       
    62 $t$@{text".split"} which can be declared to be a \bfindex{split rule} either
       
    63 locally as above, or by giving it the @{text"split"} attribute globally:
       
    64 *}
       
    65 
       
    66 lemmas [split] = list.split;
       
    67 
       
    68 text{*\noindent
       
    69 The @{text"split"} attribute can be removed with the @{text"del"} modifier,
       
    70 either locally
       
    71 *}
       
    72 (*<*)
       
    73 lemma "dummy=dummy";
       
    74 (*>*)
       
    75 apply(simp split del: split_if);
       
    76 (*<*)
       
    77 oops;
       
    78 (*>*)
       
    79 text{*\noindent
       
    80 or globally:
       
    81 *}
       
    82 lemmas [split del] = list.split;
       
    83 
       
    84 text{*
       
    85 The above split rules intentionally only affect the conclusion of a
       
    86 subgoal.  If you want to split an @{text"if"} or @{text"case"}-expression in
       
    87 the assumptions, you have to apply @{thm[source]split_if_asm} or
       
    88 $t$@{text".split_asm"}:
       
    89 *}
       
    90 
       
    91 lemma "if xs = [] then ys ~= [] else ys = [] ==> xs @ ys ~= []"
       
    92 apply(simp only: split: split_if_asm);
       
    93 
       
    94 txt{*\noindent
       
    95 In contrast to splitting the conclusion, this actually creates two
       
    96 separate subgoals (which are solved by @{text"simp_all"}):
       
    97 \begin{isabelle}
       
    98 \ \isadigit{1}{\isachardot}\ {\isasymlbrakk}\mbox{xs}\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}{\isacharsemicolon}\ \mbox{ys}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharat}\ \mbox{ys}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\isanewline
       
    99 \ \isadigit{2}{\isachardot}\ {\isasymlbrakk}\mbox{xs}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}{\isacharsemicolon}\ \mbox{ys}\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{xs}\ {\isacharat}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}
       
   100 \end{isabelle}
       
   101 If you need to split both in the assumptions and the conclusion,
       
   102 use $t$@{text".splits"} which subsumes $t$@{text".split"} and
       
   103 $t$@{text".split_asm"}. Analogously, there is @{thm[source]if_splits}.
       
   104 *}
       
   105 
       
   106 (*<*)
       
   107 by(simp_all)
       
   108 end
       
   109 (*>*)