src/HOL/BNF/BNF_FP_Base.thy
changeset 53311 802ae7dae691
parent 53310 8af01463b2d3
child 53553 d4191bf88529
equal deleted inserted replaced
53310:8af01463b2d3 53311:802ae7dae691
       
     1 (*  Title:      HOL/BNF/BNF_FP_Base.thy
       
     2     Author:     Lorenz Panny, TU Muenchen
       
     3     Author:     Dmitriy Traytel, TU Muenchen
       
     4     Author:     Jasmin Blanchette, TU Muenchen
       
     5     Copyright   2012, 2013
       
     6 
       
     7 Shared fixed point operations on bounded natural functors, including
       
     8 *)
       
     9 
       
    10 header {* Shared Fixed Point Operations on Bounded Natural Functors *}
       
    11 
       
    12 theory BNF_FP_Base
       
    13 imports BNF_Comp BNF_Ctr_Sugar
       
    14 keywords
       
    15   "defaults"
       
    16 begin
       
    17 
       
    18 lemma mp_conj: "(P \<longrightarrow> Q) \<and> R \<Longrightarrow> P \<Longrightarrow> R \<and> Q"
       
    19 by auto
       
    20 
       
    21 lemma eq_sym_Unity_conv: "(x = (() = ())) = x"
       
    22 by blast
       
    23 
       
    24 lemma unit_case_Unity: "(case u of () => f) = f"
       
    25 by (cases u) (hypsubst, rule unit.cases)
       
    26 
       
    27 lemma prod_case_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p"
       
    28 by simp
       
    29 
       
    30 lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
       
    31 by simp
       
    32 
       
    33 lemma prod_all_impI: "(\<And>x y. P (x, y) \<Longrightarrow> Q (x, y)) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
       
    34 by clarify
       
    35 
       
    36 lemma prod_all_impI_step: "(\<And>x. \<forall>y. P (x, y) \<longrightarrow> Q (x, y)) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
       
    37 by auto
       
    38 
       
    39 lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x"
       
    40 unfolding o_def fun_eq_iff by simp
       
    41 
       
    42 lemma o_bij:
       
    43   assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id"
       
    44   shows "bij f"
       
    45 unfolding bij_def inj_on_def surj_def proof safe
       
    46   fix a1 a2 assume "f a1 = f a2"
       
    47   hence "g ( f a1) = g (f a2)" by simp
       
    48   thus "a1 = a2" using gf unfolding fun_eq_iff by simp
       
    49 next
       
    50   fix b
       
    51   have "b = f (g b)"
       
    52   using fg unfolding fun_eq_iff by simp
       
    53   thus "EX a. b = f a" by blast
       
    54 qed
       
    55 
       
    56 lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
       
    57 
       
    58 lemma sum_case_step:
       
    59 "sum_case (sum_case f' g') g (Inl p) = sum_case f' g' p"
       
    60 "sum_case f (sum_case f' g') (Inr p) = sum_case f' g' p"
       
    61 by auto
       
    62 
       
    63 lemma one_pointE: "\<lbrakk>\<And>x. s = x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
       
    64 by simp
       
    65 
       
    66 lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
       
    67 by blast
       
    68 
       
    69 lemma obj_sumE_f:
       
    70 "\<lbrakk>\<forall>x. s = f (Inl x) \<longrightarrow> P; \<forall>x. s = f (Inr x) \<longrightarrow> P\<rbrakk> \<Longrightarrow> \<forall>x. s = f x \<longrightarrow> P"
       
    71 by (rule allI) (metis sumE)
       
    72 
       
    73 lemma obj_sumE: "\<lbrakk>\<forall>x. s = Inl x \<longrightarrow> P; \<forall>x. s = Inr x \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
       
    74 by (cases s) auto
       
    75 
       
    76 lemma sum_case_if:
       
    77 "sum_case f g (if p then Inl x else Inr y) = (if p then f x else g y)"
       
    78 by simp
       
    79 
       
    80 lemma mem_UN_compreh_eq: "(z : \<Union>{y. \<exists>x\<in>A. y = F x}) = (\<exists>x\<in>A. z : F x)"
       
    81 by blast
       
    82 
       
    83 lemma UN_compreh_eq_eq:
       
    84 "\<Union>{y. \<exists>x\<in>A. y = {}} = {}"
       
    85 "\<Union>{y. \<exists>x\<in>A. y = {x}} = A"
       
    86 by blast+
       
    87 
       
    88 lemma Inl_Inr_False: "(Inl x = Inr y) = False"
       
    89 by simp
       
    90 
       
    91 lemma prod_set_simps:
       
    92 "fsts (x, y) = {x}"
       
    93 "snds (x, y) = {y}"
       
    94 unfolding fsts_def snds_def by simp+
       
    95 
       
    96 lemma sum_set_simps:
       
    97 "setl (Inl x) = {x}"
       
    98 "setl (Inr x) = {}"
       
    99 "setr (Inl x) = {}"
       
   100 "setr (Inr x) = {x}"
       
   101 unfolding sum_set_defs by simp+
       
   102 
       
   103 lemma prod_rel_simp:
       
   104 "prod_rel P Q (x, y) (x', y') \<longleftrightarrow> P x x' \<and> Q y y'"
       
   105 unfolding prod_rel_def by simp
       
   106 
       
   107 lemma sum_rel_simps:
       
   108 "sum_rel P Q (Inl x) (Inl x') \<longleftrightarrow> P x x'"
       
   109 "sum_rel P Q (Inr y) (Inr y') \<longleftrightarrow> Q y y'"
       
   110 "sum_rel P Q (Inl x) (Inr y') \<longleftrightarrow> False"
       
   111 "sum_rel P Q (Inr y) (Inl x') \<longleftrightarrow> False"
       
   112 unfolding sum_rel_def by simp+
       
   113 
       
   114 lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y"
       
   115 by blast
       
   116 
       
   117 lemma rewriteR_comp_comp: "\<lbrakk>g o h = r\<rbrakk> \<Longrightarrow> f o g o h = f o r"
       
   118   unfolding o_def fun_eq_iff by auto
       
   119 
       
   120 lemma rewriteR_comp_comp2: "\<lbrakk>g o h = r1 o r2; f o r1 = l\<rbrakk> \<Longrightarrow> f o g o h = l o r2"
       
   121   unfolding o_def fun_eq_iff by auto
       
   122 
       
   123 lemma rewriteL_comp_comp: "\<lbrakk>f o g = l\<rbrakk> \<Longrightarrow> f o (g o h) = l o h"
       
   124   unfolding o_def fun_eq_iff by auto
       
   125 
       
   126 lemma rewriteL_comp_comp2: "\<lbrakk>f o g = l1 o l2; l2 o h = r\<rbrakk> \<Longrightarrow> f o (g o h) = l1 o r"
       
   127   unfolding o_def fun_eq_iff by auto
       
   128 
       
   129 lemma convol_o: "<f, g> o h = <f o h, g o h>"
       
   130   unfolding convol_def by auto
       
   131 
       
   132 lemma map_pair_o_convol: "map_pair h1 h2 o <f, g> = <h1 o f, h2 o g>"
       
   133   unfolding convol_def by auto
       
   134 
       
   135 lemma map_pair_o_convol_id: "(map_pair f id \<circ> <id , g>) x = <id \<circ> f , g> x"
       
   136   unfolding map_pair_o_convol id_o o_id ..
       
   137 
       
   138 lemma o_sum_case: "h o sum_case f g = sum_case (h o f) (h o g)"
       
   139   unfolding o_def by (auto split: sum.splits)
       
   140 
       
   141 lemma sum_case_o_sum_map: "sum_case f g o sum_map h1 h2 = sum_case (f o h1) (g o h2)"
       
   142   unfolding o_def by (auto split: sum.splits)
       
   143 
       
   144 lemma sum_case_o_sum_map_id: "(sum_case id g o sum_map f id) x = sum_case (f o id) g x"
       
   145   unfolding sum_case_o_sum_map id_o o_id ..
       
   146 
       
   147 lemma fun_rel_def_butlast:
       
   148   "(fun_rel R (fun_rel S T)) f g = (\<forall>x y. R x y \<longrightarrow> (fun_rel S T) (f x) (g y))"
       
   149   unfolding fun_rel_def ..
       
   150 
       
   151 lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)"
       
   152   by auto
       
   153 
       
   154 lemma eq_subset: "op = \<le> (\<lambda>a b. P a b \<or> a = b)"
       
   155   by auto
       
   156 
       
   157 lemma eq_le_Grp_id_iff: "(op = \<le> Grp (Collect R) id) = (All R)"
       
   158   unfolding Grp_def id_apply by blast
       
   159 
       
   160 lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv>
       
   161    (\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)"
       
   162   unfolding Grp_def by rule auto
       
   163 
       
   164 lemma if_if_True:
       
   165   "(if (if b then True else b') then (if b then x else x') else f (if b then y else y')) =
       
   166    (if b then x else if b' then x' else f y')"
       
   167   by simp
       
   168 
       
   169 lemma if_if_False:
       
   170   "(if (if b then False else b') then (if b then x else x') else f (if b then y else y')) =
       
   171    (if b then f y else if b' then x' else f y')"
       
   172   by simp
       
   173 
       
   174 ML_file "Tools/bnf_fp_util.ML"
       
   175 ML_file "Tools/bnf_fp_def_sugar_tactics.ML"
       
   176 ML_file "Tools/bnf_fp_def_sugar.ML"
       
   177 ML_file "Tools/bnf_fp_n2m_tactics.ML"
       
   178 ML_file "Tools/bnf_fp_n2m.ML"
       
   179 ML_file "Tools/bnf_fp_n2m_sugar.ML"
       
   180 ML_file "Tools/bnf_fp_rec_sugar_util.ML"
       
   181 ML_file "Tools/bnf_fp_rec_sugar_tactics.ML"
       
   182 ML_file "Tools/bnf_fp_rec_sugar.ML"
       
   183 
       
   184 end