src/HOL/ex/While_Combinator_Example.thy
changeset 37760 8380686be5cd
child 40786 0a54cfc9add3
equal deleted inserted replaced
37759:00ff97087ab5 37760:8380686be5cd
       
     1 (*  Title:      HOL/Library/While_Combinator.thy
       
     2     Author:     Tobias Nipkow
       
     3     Copyright   2000 TU Muenchen
       
     4 *)
       
     5 
       
     6 header {* An application of the While combinator *}
       
     7 
       
     8 theory While_Combinator_Example
       
     9 imports While_Combinator
       
    10 begin
       
    11 
       
    12 text {* Computation of the @{term lfp} on finite sets via 
       
    13   iteration. *}
       
    14 
       
    15 theorem lfp_conv_while:
       
    16   "[| mono f; finite U; f U = U |] ==>
       
    17     lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
       
    18 apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and
       
    19                 r = "((Pow U \<times> UNIV) \<times> (Pow U \<times> UNIV)) \<inter>
       
    20                      inv_image finite_psubset (op - U o fst)" in while_rule)
       
    21    apply (subst lfp_unfold)
       
    22     apply assumption
       
    23    apply (simp add: monoD)
       
    24   apply (subst lfp_unfold)
       
    25    apply assumption
       
    26   apply clarsimp
       
    27   apply (blast dest: monoD)
       
    28  apply (fastsimp intro!: lfp_lowerbound)
       
    29  apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset])
       
    30 apply (clarsimp simp add: finite_psubset_def order_less_le)
       
    31 apply (blast intro!: finite_Diff dest: monoD)
       
    32 done
       
    33 
       
    34 
       
    35 subsection {* Example *}
       
    36 
       
    37 text{* Cannot use @{thm[source]set_eq_subset} because it leads to
       
    38 looping because the antisymmetry simproc turns the subset relationship
       
    39 back into equality. *}
       
    40 
       
    41 theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
       
    42   P {0, 4, 2}"
       
    43 proof -
       
    44   have seteq: "!!A B. (A = B) = ((!a : A. a:B) & (!b:B. b:A))"
       
    45     by blast
       
    46   have aux: "!!f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
       
    47     apply blast
       
    48     done
       
    49   show ?thesis
       
    50     apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
       
    51        apply (rule monoI)
       
    52       apply blast
       
    53      apply simp
       
    54     apply (simp add: aux set_eq_subset)
       
    55     txt {* The fixpoint computation is performed purely by rewriting: *}
       
    56     apply (simp add: while_unfold aux seteq del: subset_empty)
       
    57     done
       
    58 qed
       
    59 
       
    60 end