src/HOL/Word/Bit_Representation.thy
changeset 47168 8395d7d63fc8
parent 47164 6a4c479ba94f
child 47170 3b5434efdf91
equal deleted inserted replaced
47167:099397de21e3 47168:8395d7d63fc8
   622 
   622 
   623 lemma sbintrunc_dec:
   623 lemma sbintrunc_dec:
   624   "x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x"
   624   "x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x"
   625   unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp
   625   unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp
   626 
   626 
   627 lemmas zmod_uminus' = zmod_uminus [where b=c] for c
   627 lemmas zmod_uminus' = zminus_zmod [where m=c] for c
   628 lemmas zpower_zmod' = power_mod [where b=c and n=k] for c k
   628 lemmas zpower_zmod' = power_mod [where b=c and n=k] for c k
   629 
   629 
   630 lemmas brdmod1s' [symmetric] = 
   630 lemmas brdmod1s' [symmetric] =
   631   mod_add_left_eq mod_add_right_eq 
   631   mod_add_left_eq mod_add_right_eq
   632   zmod_zsub_left_eq zmod_zsub_right_eq 
   632   mod_diff_left_eq mod_diff_right_eq
   633   mod_mult_right_eq zmod_zmult1_eq_rev 
   633   mod_mult_left_eq mod_mult_right_eq
   634 
   634 
   635 lemmas brdmods' [symmetric] = 
   635 lemmas brdmods' [symmetric] = 
   636   zpower_zmod' [symmetric]
   636   zpower_zmod' [symmetric]
   637   trans [OF mod_add_left_eq mod_add_right_eq] 
   637   trans [OF mod_add_left_eq mod_add_right_eq] 
   638   trans [OF zmod_zsub_left_eq zmod_zsub_right_eq] 
   638   trans [OF mod_diff_left_eq mod_diff_right_eq] 
   639   trans [OF mod_mult_right_eq zmod_zmult1_eq_rev] 
   639   trans [OF mod_mult_right_eq mod_mult_left_eq] 
   640   zmod_uminus' [symmetric]
   640   zmod_uminus' [symmetric]
   641   mod_add_left_eq [where b = "1::int"]
   641   mod_add_left_eq [where b = "1::int"]
   642   zmod_zsub_left_eq [where b = "1"]
   642   mod_diff_left_eq [where b = "1::int"]
   643 
   643 
   644 lemmas bintr_arith1s =
   644 lemmas bintr_arith1s =
   645   brdmod1s' [where c="2^n::int", folded bintrunc_mod2p] for n
   645   brdmod1s' [where c="2^n::int", folded bintrunc_mod2p] for n
   646 lemmas bintr_ariths =
   646 lemmas bintr_ariths =
   647   brdmods' [where c="2^n::int", folded bintrunc_mod2p] for n
   647   brdmods' [where c="2^n::int", folded bintrunc_mod2p] for n