src/HOL/Finite_Set.thy
changeset 45166 861ab6f9eb2b
parent 44928 7ef6505bde7f
child 45962 fc77947a7db4
equal deleted inserted replaced
45165:f4896c792316 45166:861ab6f9eb2b
  1857 lemma card_Diff_singleton:
  1857 lemma card_Diff_singleton:
  1858   "finite A ==> x: A ==> card (A - {x}) = card A - 1"
  1858   "finite A ==> x: A ==> card (A - {x}) = card A - 1"
  1859 by (simp add: card_Suc_Diff1 [symmetric])
  1859 by (simp add: card_Suc_Diff1 [symmetric])
  1860 
  1860 
  1861 lemma card_Diff_singleton_if:
  1861 lemma card_Diff_singleton_if:
  1862   "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
  1862   "finite A ==> card (A - {x}) = (if x : A then card A - 1 else card A)"
  1863 by (simp add: card_Diff_singleton)
  1863 by (simp add: card_Diff_singleton)
  1864 
  1864 
  1865 lemma card_Diff_insert[simp]:
  1865 lemma card_Diff_insert[simp]:
  1866 assumes "finite A" and "a:A" and "a ~: B"
  1866 assumes "finite A" and "a:A" and "a ~: B"
  1867 shows "card(A - insert a B) = card(A - B) - 1"
  1867 shows "card(A - insert a B) = card(A - B) - 1"