src/HOL/Library/Extended_Real.thy
changeset 57447 87429bdecad5
parent 57025 e7fd64f82876
child 57512 cc97b347b301
equal deleted inserted replaced
57446:06e195515deb 57447:87429bdecad5
    77     | (MInf) "x = -\<infinity>"
    77     | (MInf) "x = -\<infinity>"
    78   using assms by (cases x) auto
    78   using assms by (cases x) auto
    79 
    79 
    80 lemmas ereal2_cases = ereal_cases[case_product ereal_cases]
    80 lemmas ereal2_cases = ereal_cases[case_product ereal_cases]
    81 lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]
    81 lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]
       
    82 
       
    83 lemma ereal_all_split: "\<And>P. (\<forall>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<and> (\<forall>x. P (ereal x)) \<and> P (-\<infinity>)"
       
    84   by (metis ereal_cases)
       
    85 
       
    86 lemma ereal_ex_split: "\<And>P. (\<exists>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<or> (\<exists>x. P (ereal x)) \<or> P (-\<infinity>)"
       
    87   by (metis ereal_cases)
    82 
    88 
    83 lemma ereal_uminus_eq_iff[simp]:
    89 lemma ereal_uminus_eq_iff[simp]:
    84   fixes a b :: ereal
    90   fixes a b :: ereal
    85   shows "-a = -b \<longleftrightarrow> a = b"
    91   shows "-a = -b \<longleftrightarrow> a = b"
    86   by (cases rule: ereal2_cases[of a b]) simp_all
    92   by (cases rule: ereal2_cases[of a b]) simp_all
  2119   with that[of "x - e" "x + e"] ereal_between[OF x, of e]
  2125   with that[of "x - e" "x + e"] ereal_between[OF x, of e]
  2120   show thesis
  2126   show thesis
  2121     by auto
  2127     by auto
  2122 qed
  2128 qed
  2123 
  2129 
  2124 
       
  2125 subsubsection {* Convergent sequences *}
  2130 subsubsection {* Convergent sequences *}
  2126 
  2131 
  2127 lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net"
  2132 lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net"
  2128   (is "?l = ?r")
  2133   (is "?l = ?r")
  2129 proof (intro iffI topological_tendstoI)
  2134 proof (intro iffI topological_tendstoI)