equal
deleted
inserted
replaced
77 | (MInf) "x = -\<infinity>" |
77 | (MInf) "x = -\<infinity>" |
78 using assms by (cases x) auto |
78 using assms by (cases x) auto |
79 |
79 |
80 lemmas ereal2_cases = ereal_cases[case_product ereal_cases] |
80 lemmas ereal2_cases = ereal_cases[case_product ereal_cases] |
81 lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] |
81 lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] |
|
82 |
|
83 lemma ereal_all_split: "\<And>P. (\<forall>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<and> (\<forall>x. P (ereal x)) \<and> P (-\<infinity>)" |
|
84 by (metis ereal_cases) |
|
85 |
|
86 lemma ereal_ex_split: "\<And>P. (\<exists>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<or> (\<exists>x. P (ereal x)) \<or> P (-\<infinity>)" |
|
87 by (metis ereal_cases) |
82 |
88 |
83 lemma ereal_uminus_eq_iff[simp]: |
89 lemma ereal_uminus_eq_iff[simp]: |
84 fixes a b :: ereal |
90 fixes a b :: ereal |
85 shows "-a = -b \<longleftrightarrow> a = b" |
91 shows "-a = -b \<longleftrightarrow> a = b" |
86 by (cases rule: ereal2_cases[of a b]) simp_all |
92 by (cases rule: ereal2_cases[of a b]) simp_all |
2119 with that[of "x - e" "x + e"] ereal_between[OF x, of e] |
2125 with that[of "x - e" "x + e"] ereal_between[OF x, of e] |
2120 show thesis |
2126 show thesis |
2121 by auto |
2127 by auto |
2122 qed |
2128 qed |
2123 |
2129 |
2124 |
|
2125 subsubsection {* Convergent sequences *} |
2130 subsubsection {* Convergent sequences *} |
2126 |
2131 |
2127 lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" |
2132 lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" |
2128 (is "?l = ?r") |
2133 (is "?l = ?r") |
2129 proof (intro iffI topological_tendstoI) |
2134 proof (intro iffI topological_tendstoI) |