equal
deleted
inserted
replaced
5853 unfolding is_interval_convex_1 [symmetric] is_interval_def Basis_real_def |
5853 unfolding is_interval_convex_1 [symmetric] is_interval_def Basis_real_def |
5854 by - (clarify, simp (no_asm_use), fast) |
5854 by - (clarify, simp (no_asm_use), fast) |
5855 qed |
5855 qed |
5856 |
5856 |
5857 lemma unit_interval_convex_hull: |
5857 lemma unit_interval_convex_hull: |
5858 defines "One \<equiv> \<Sum>Basis" |
5858 "cbox (0::'a::euclidean_space) One = convex hull {x. \<forall>i\<in>Basis. (x\<bullet>i = 0) \<or> (x\<bullet>i = 1)}" |
5859 shows "cbox (0::'a::euclidean_space) One = convex hull {x. \<forall>i\<in>Basis. (x\<bullet>i = 0) \<or> (x\<bullet>i = 1)}" |
|
5860 (is "?int = convex hull ?points") |
5859 (is "?int = convex hull ?points") |
5861 proof - |
5860 proof - |
5862 have One[simp]: "\<And>i. i \<in> Basis \<Longrightarrow> One \<bullet> i = 1" |
5861 have One[simp]: "\<And>i. i \<in> Basis \<Longrightarrow> One \<bullet> i = 1" |
5863 by (simp add: One_def inner_setsum_left setsum.If_cases inner_Basis) |
5862 by (simp add: One_def inner_setsum_left setsum.If_cases inner_Basis) |
5864 have "?int = {x. \<forall>i\<in>Basis. x \<bullet> i \<in> cbox 0 1}" |
5863 have "?int = {x. \<forall>i\<in>Basis. x \<bullet> i \<in> cbox 0 1}" |