src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
changeset 57447 87429bdecad5
parent 57418 6ab1c7cb0b8d
child 57512 cc97b347b301
equal deleted inserted replaced
57446:06e195515deb 57447:87429bdecad5
  5853     unfolding is_interval_convex_1 [symmetric] is_interval_def Basis_real_def
  5853     unfolding is_interval_convex_1 [symmetric] is_interval_def Basis_real_def
  5854     by - (clarify, simp (no_asm_use), fast)
  5854     by - (clarify, simp (no_asm_use), fast)
  5855 qed
  5855 qed
  5856 
  5856 
  5857 lemma unit_interval_convex_hull:
  5857 lemma unit_interval_convex_hull:
  5858   defines "One \<equiv> \<Sum>Basis"
  5858   "cbox (0::'a::euclidean_space) One = convex hull {x. \<forall>i\<in>Basis. (x\<bullet>i = 0) \<or> (x\<bullet>i = 1)}"
  5859   shows "cbox (0::'a::euclidean_space) One = convex hull {x. \<forall>i\<in>Basis. (x\<bullet>i = 0) \<or> (x\<bullet>i = 1)}"
       
  5860   (is "?int = convex hull ?points")
  5859   (is "?int = convex hull ?points")
  5861 proof -
  5860 proof -
  5862   have One[simp]: "\<And>i. i \<in> Basis \<Longrightarrow> One \<bullet> i = 1"
  5861   have One[simp]: "\<And>i. i \<in> Basis \<Longrightarrow> One \<bullet> i = 1"
  5863     by (simp add: One_def inner_setsum_left setsum.If_cases inner_Basis)
  5862     by (simp add: One_def inner_setsum_left setsum.If_cases inner_Basis)
  5864   have "?int = {x. \<forall>i\<in>Basis. x \<bullet> i \<in> cbox 0 1}"
  5863   have "?int = {x. \<forall>i\<in>Basis. x \<bullet> i \<in> cbox 0 1}"