src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy
changeset 57447 87429bdecad5
parent 57418 6ab1c7cb0b8d
child 57512 cc97b347b301
equal deleted inserted replaced
57446:06e195515deb 57447:87429bdecad5
  1185     from nn_integral_add[OF this]
  1185     from nn_integral_add[OF this]
  1186     show ?case using insert by auto
  1186     show ?case using insert by auto
  1187   qed simp
  1187   qed simp
  1188 qed simp
  1188 qed simp
  1189 
  1189 
       
  1190 lemma nn_integral_bound_simple_function:
       
  1191   assumes bnd: "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> f x" "\<And>x. x \<in> space M \<Longrightarrow> f x < \<infinity>"
       
  1192   assumes f[measurable]: "simple_function M f"
       
  1193   assumes supp: "emeasure M {x\<in>space M. f x \<noteq> 0} < \<infinity>"
       
  1194   shows "nn_integral M f < \<infinity>"
       
  1195 proof cases
       
  1196   assume "space M = {}"
       
  1197   then have "nn_integral M f = (\<integral>\<^sup>+x. 0 \<partial>M)"
       
  1198     by (intro nn_integral_cong) auto
       
  1199   then show ?thesis by simp
       
  1200 next
       
  1201   assume "space M \<noteq> {}"
       
  1202   with simple_functionD(1)[OF f] bnd have bnd: "0 \<le> Max (f`space M) \<and> Max (f`space M) < \<infinity>"
       
  1203     by (subst Max_less_iff) (auto simp: Max_ge_iff)
       
  1204   
       
  1205   have "nn_integral M f \<le> (\<integral>\<^sup>+x. Max (f`space M) * indicator {x\<in>space M. f x \<noteq> 0} x \<partial>M)"
       
  1206   proof (rule nn_integral_mono)
       
  1207     fix x assume "x \<in> space M"
       
  1208     with f show "f x \<le> Max (f ` space M) * indicator {x \<in> space M. f x \<noteq> 0} x"
       
  1209       by (auto split: split_indicator intro!: Max_ge simple_functionD)
       
  1210   qed
       
  1211   also have "\<dots> < \<infinity>"
       
  1212     using bnd supp by (subst nn_integral_cmult) auto
       
  1213   finally show ?thesis .
       
  1214 qed
       
  1215 
  1190 lemma nn_integral_Markov_inequality:
  1216 lemma nn_integral_Markov_inequality:
  1191   assumes u: "u \<in> borel_measurable M" "AE x in M. 0 \<le> u x" and "A \<in> sets M" and c: "0 \<le> c"
  1217   assumes u: "u \<in> borel_measurable M" "AE x in M. 0 \<le> u x" and "A \<in> sets M" and c: "0 \<le> c"
  1192   shows "(emeasure M) ({x\<in>space M. 1 \<le> c * u x} \<inter> A) \<le> c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)"
  1218   shows "(emeasure M) ({x\<in>space M. 1 \<le> c * u x} \<inter> A) \<le> c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)"
  1193     (is "(emeasure M) ?A \<le> _ * ?PI")
  1219     (is "(emeasure M) ?A \<le> _ * ?PI")
  1194 proof -
  1220 proof -