doc-src/IsarAdvanced/Classes/Thy/code_examples/Classes.hs
changeset 22813 882513df2472
parent 22317 b550d2c6ca90
child 23956 48494ccfabaf
equal deleted inserted replaced
22812:1fe9d6384b11 22813:882513df2472
     1 module Classes where {
     1 module Classes where {
     2 
     2 
     3 import Nat;
     3 import qualified Integer;
     4 import Integer;
     4 import qualified Nat;
     5 
     5 
     6 class Semigroup a where {
     6 class Semigroup a where {
     7   mult :: a -> a -> a;
     7   mult :: a -> a -> a;
     8 };
     8 };
     9 
     9 
    10 class (Semigroup a) => Monoidl a where {
    10 class (Classes.Semigroup a) => Monoidl a where {
    11   neutral :: a;
    11   neutral :: a;
    12 };
    12 };
    13 
    13 
    14 class (Monoidl a) => Group a where {
    14 class (Classes.Monoidl a) => Group a where {
    15   inverse :: a -> a;
    15   inverse :: a -> a;
    16 };
    16 };
    17 
    17 
    18 inverse_int :: Integer -> Integer;
    18 inverse_int :: Integer.Inta -> Integer.Inta;
    19 inverse_int i = negate i;
    19 inverse_int i = Integer.uminus_int i;
    20 
    20 
    21 neutral_int :: Integer;
    21 neutral_int :: Integer.Inta;
    22 neutral_int = 0;
    22 neutral_int = Integer.Number_of_int Integer.Pls;
    23 
    23 
    24 mult_int :: Integer -> Integer -> Integer;
    24 mult_int :: Integer.Inta -> Integer.Inta -> Integer.Inta;
    25 mult_int i j = i + j;
    25 mult_int i j = Integer.plus_int i j;
    26 
    26 
    27 instance Semigroup Integer where {
    27 instance Classes.Semigroup Integer.Inta where {
    28   mult = mult_int;
    28   mult = Classes.mult_int;
    29 };
    29 };
    30 
    30 
    31 instance Monoidl Integer where {
    31 instance Classes.Monoidl Integer.Inta where {
    32   neutral = neutral_int;
    32   neutral = Classes.neutral_int;
    33 };
    33 };
    34 
    34 
    35 instance Group Integer where {
    35 instance Classes.Group Integer.Inta where {
    36   inverse = inverse_int;
    36   inverse = Classes.inverse_int;
    37 };
    37 };
    38 
    38 
    39 pow_nat :: (Monoidl a) => Nat -> a -> a;
    39 pow_nat :: (Classes.Monoidl b) => Nat.Nat -> b -> b;
    40 pow_nat (Suc n) x = mult x (pow_nat n x);
    40 pow_nat (Nat.Suc n) x = Classes.mult x (Classes.pow_nat n x);
    41 pow_nat Zero_nat x = neutral;
    41 pow_nat Nat.Zero_nat x = Classes.neutral;
    42 
    42 
    43 pow_int :: (Group a) => Integer -> a -> a;
    43 pow_int :: (Classes.Group a) => Integer.Inta -> a -> a;
    44 pow_int k x =
    44 pow_int k x =
    45   (if 0 <= k then pow_nat (nat k) x
    45   (if Integer.less_eq_int (Integer.Number_of_int Integer.Pls) k
    46     else inverse (pow_nat (nat (negate k)) x));
    46     then Classes.pow_nat (Integer.nat k) x
       
    47     else Classes.inverse
       
    48            (Classes.pow_nat (Integer.nat (Integer.uminus_int k)) x));
    47 
    49 
    48 example :: Integer;
    50 example :: Integer.Inta;
    49 example = pow_int 10 (-2);
    51 example =
       
    52   Classes.pow_int
       
    53     (Integer.Number_of_int
       
    54       (Integer.Bit
       
    55         (Integer.Bit
       
    56           (Integer.Bit (Integer.Bit Integer.Pls Integer.B1) Integer.B0)
       
    57           Integer.B1)
       
    58         Integer.B0))
       
    59     (Integer.Number_of_int (Integer.Bit Integer.Min Integer.B0));
    50 
    60 
    51 }
    61 }