src/HOL/Computational_Algebra/Euclidean_Algorithm.thy
changeset 67167 88d1c9d86f48
parent 66817 0b12755ccbb2
child 67399 eab6ce8368fa
equal deleted inserted replaced
67166:a77d54ef718b 67167:88d1c9d86f48
   600     by (simp add: fun_eq_iff Euclidean_Algorithm.lcm_def semiring_gcd_class.lcm_gcd)
   600     by (simp add: fun_eq_iff Euclidean_Algorithm.lcm_def semiring_gcd_class.lcm_gcd)
   601   show "(Euclidean_Algorithm.Gcd :: nat set \<Rightarrow> _) = Gcd"
   601   show "(Euclidean_Algorithm.Gcd :: nat set \<Rightarrow> _) = Gcd"
   602     by (simp add: fun_eq_iff Euclidean_Algorithm.Gcd_def semiring_Gcd_class.Gcd_Lcm)
   602     by (simp add: fun_eq_iff Euclidean_Algorithm.Gcd_def semiring_Gcd_class.Gcd_Lcm)
   603 qed
   603 qed
   604 
   604 
       
   605 lemma prime_factorization_Suc_0 [simp]: "prime_factorization (Suc 0) = {#}"
       
   606   unfolding One_nat_def [symmetric] using prime_factorization_1 .
       
   607 
   605 instance int :: normalization_euclidean_semiring ..
   608 instance int :: normalization_euclidean_semiring ..
   606 
   609 
   607 instance int :: euclidean_ring_gcd
   610 instance int :: euclidean_ring_gcd
   608 proof
   611 proof
   609   interpret semiring_Gcd 1 0 times
   612   interpret semiring_Gcd 1 0 times