equal
deleted
inserted
replaced
600 by (simp add: fun_eq_iff Euclidean_Algorithm.lcm_def semiring_gcd_class.lcm_gcd) |
600 by (simp add: fun_eq_iff Euclidean_Algorithm.lcm_def semiring_gcd_class.lcm_gcd) |
601 show "(Euclidean_Algorithm.Gcd :: nat set \<Rightarrow> _) = Gcd" |
601 show "(Euclidean_Algorithm.Gcd :: nat set \<Rightarrow> _) = Gcd" |
602 by (simp add: fun_eq_iff Euclidean_Algorithm.Gcd_def semiring_Gcd_class.Gcd_Lcm) |
602 by (simp add: fun_eq_iff Euclidean_Algorithm.Gcd_def semiring_Gcd_class.Gcd_Lcm) |
603 qed |
603 qed |
604 |
604 |
|
605 lemma prime_factorization_Suc_0 [simp]: "prime_factorization (Suc 0) = {#}" |
|
606 unfolding One_nat_def [symmetric] using prime_factorization_1 . |
|
607 |
605 instance int :: normalization_euclidean_semiring .. |
608 instance int :: normalization_euclidean_semiring .. |
606 |
609 |
607 instance int :: euclidean_ring_gcd |
610 instance int :: euclidean_ring_gcd |
608 proof |
611 proof |
609 interpret semiring_Gcd 1 0 times |
612 interpret semiring_Gcd 1 0 times |