equal
deleted
inserted
replaced
314 * Multisets are now ordered with the multiset ordering |
314 * Multisets are now ordered with the multiset ordering |
315 #\<subseteq># ~> \<le> |
315 #\<subseteq># ~> \<le> |
316 #\<subset># ~> < |
316 #\<subset># ~> < |
317 le_multiset ~> less_eq_multiset |
317 le_multiset ~> less_eq_multiset |
318 less_multiset ~> le_multiset |
318 less_multiset ~> le_multiset |
319 INCOMPATIBILITY |
319 INCOMPATIBILITY. |
320 |
320 |
321 * The prefix multiset_order has been discontinued: the theorems can be directly |
321 * The prefix multiset_order has been discontinued: the theorems can be directly |
322 accessed. |
322 accessed. As a consequence, the lemmas "order_multiset" and "linorder_multiset" |
323 INCOMPATILBITY |
323 have been discontinued, and the interpretations "multiset_linorder" and |
|
324 "multiset_wellorder" have been replaced by instantiations. |
|
325 INCOMPATIBILITY. |
324 |
326 |
325 * Some theorems about the multiset ordering have been renamed: |
327 * Some theorems about the multiset ordering have been renamed: |
326 le_multiset_def ~> less_eq_multiset_def |
328 le_multiset_def ~> less_eq_multiset_def |
327 less_multiset_def ~> le_multiset_def |
329 less_multiset_def ~> le_multiset_def |
328 less_eq_imp_le_multiset ~> subset_eq_imp_le_multiset |
330 less_eq_imp_le_multiset ~> subset_eq_imp_le_multiset |
344 ex_gt_count_imp_less_multiset ~> ex_gt_count_imp_le_multiset |
346 ex_gt_count_imp_less_multiset ~> ex_gt_count_imp_le_multiset |
345 less_multiset_plus_left_nonempty ~> le_multiset_plus_left_nonempty |
347 less_multiset_plus_left_nonempty ~> le_multiset_plus_left_nonempty |
346 le_multiset_plus_right_nonempty ~> le_multiset_plus_right_nonempty |
348 le_multiset_plus_right_nonempty ~> le_multiset_plus_right_nonempty |
347 less_multiset_plus_plus_left_iff ~> le_multiset_plus_plus_left_iff |
349 less_multiset_plus_plus_left_iff ~> le_multiset_plus_plus_left_iff |
348 less_multiset_plus_plus_right_iff ~> le_multiset_plus_plus_right_iff |
350 less_multiset_plus_plus_right_iff ~> le_multiset_plus_plus_right_iff |
349 INCOMPATIBILITY |
351 INCOMPATIBILITY. |
350 |
352 |
351 * Compound constants INFIMUM and SUPREMUM are mere abbreviations now. |
353 * Compound constants INFIMUM and SUPREMUM are mere abbreviations now. |
352 INCOMPATIBILITY. |
354 INCOMPATIBILITY. |
353 |
355 |
354 * More complex analysis including Cauchy's inequality, Liouville theorem, |
356 * More complex analysis including Cauchy's inequality, Liouville theorem, |