387 "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..<b}. f x)" |
387 "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..<b}. f x)" |
388 by (auto intro!: set_integral_discrete_difference[where X="{a, b}"] |
388 by (auto intro!: set_integral_discrete_difference[where X="{a, b}"] |
389 simp add: interval_lebesgue_integral_def einterval_iff) |
389 simp add: interval_lebesgue_integral_def einterval_iff) |
390 |
390 |
391 lemma interval_integral_Ioi: |
391 lemma interval_integral_Ioi: |
392 "\<bar>a\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..\<infinity>. f x) = (LBINT x : {real a <..}. f x)" |
392 "\<bar>a\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..\<infinity>. f x) = (LBINT x : {real_of_ereal a <..}. f x)" |
393 by (auto simp add: interval_lebesgue_integral_def einterval_iff) |
393 by (auto simp add: interval_lebesgue_integral_def einterval_iff) |
394 |
394 |
395 lemma interval_integral_Ioo: |
395 lemma interval_integral_Ioo: |
396 "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real a <..< real b}. f x)" |
396 "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)" |
397 by (auto simp add: interval_lebesgue_integral_def einterval_iff) |
397 by (auto simp add: interval_lebesgue_integral_def einterval_iff) |
398 |
398 |
399 lemma interval_integral_discrete_difference: |
399 lemma interval_integral_discrete_difference: |
400 fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal |
400 fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal |
401 assumes "countable X" |
401 assumes "countable X" |