src/HOL/Power.thy
changeset 58437 8d124c73c37a
parent 58410 6d46ad54a2ab
child 58656 7f14d5d9b933
equal deleted inserted replaced
58436:fe9de4089345 58437:8d124c73c37a
   792     by (induct A rule: finite_induct) (auto simp add: power_mult_distrib)
   792     by (induct A rule: finite_induct) (auto simp add: power_mult_distrib)
   793 next
   793 next
   794   case False then show ?thesis 
   794   case False then show ?thesis 
   795     by simp
   795     by simp
   796 qed
   796 qed
       
   797 
       
   798 lemma power_setsum:
       
   799   "c ^ (\<Sum>a\<in>A. f a) = (\<Prod>a\<in>A. c ^ f a)"
       
   800   by (induct A rule: infinite_finite_induct) (simp_all add: power_add)
   797 
   801 
   798 lemma setprod_gen_delta:
   802 lemma setprod_gen_delta:
   799   assumes fS: "finite S"
   803   assumes fS: "finite S"
   800   shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::comm_monoid_mult) * c^ (card S - 1) else c^ card S)"
   804   shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::comm_monoid_mult) * c^ (card S - 1) else c^ card S)"
   801 proof-
   805 proof-