src/Pure/Proof/proofchecker.ML
changeset 44078 8eac3858229c
parent 44077 427db4ab3c99
parent 44071 9ee98b584494
child 44079 bcc60791b7b9
equal deleted inserted replaced
44077:427db4ab3c99 44078:8eac3858229c
     1 (*  Title:      Pure/Proof/proofchecker.ML
       
     2     Author:     Stefan Berghofer, TU Muenchen
       
     3 
       
     4 Simple proof checker based only on the core inference rules
       
     5 of Isabelle/Pure.
       
     6 *)
       
     7 
       
     8 signature PROOF_CHECKER =
       
     9 sig
       
    10   val thm_of_proof : theory -> Proofterm.proof -> thm
       
    11 end;
       
    12 
       
    13 structure ProofChecker : PROOF_CHECKER =
       
    14 struct
       
    15 
       
    16 (***** construct a theorem out of a proof term *****)
       
    17 
       
    18 fun lookup_thm thy =
       
    19   let val tab = fold_rev Symtab.update (Global_Theory.all_thms_of thy) Symtab.empty
       
    20   in
       
    21     (fn s => case Symtab.lookup tab s of
       
    22        NONE => error ("Unknown theorem " ^ quote s)
       
    23      | SOME thm => thm)
       
    24   end;
       
    25 
       
    26 val beta_eta_convert =
       
    27   Conv.fconv_rule Drule.beta_eta_conversion;
       
    28 
       
    29 (* equality modulo renaming of type variables *)
       
    30 fun is_equal t t' =
       
    31   let
       
    32     val atoms = fold_types (fold_atyps (insert (op =))) t [];
       
    33     val atoms' = fold_types (fold_atyps (insert (op =))) t' []
       
    34   in
       
    35     length atoms = length atoms' andalso
       
    36     map_types (map_atyps (the o AList.lookup (op =) (atoms ~~ atoms'))) t aconv t'
       
    37   end;
       
    38 
       
    39 fun pretty_prf thy vs Hs prf =
       
    40   let val prf' = prf |> Proofterm.prf_subst_bounds (map Free vs) |>
       
    41     Proofterm.prf_subst_pbounds (map (Hyp o prop_of) Hs)
       
    42   in
       
    43     (Proof_Syntax.pretty_proof (Syntax.init_pretty_global thy) prf',
       
    44      Syntax.pretty_term_global thy (Reconstruct.prop_of prf'))
       
    45   end;
       
    46 
       
    47 fun pretty_term thy vs _ t =
       
    48   let val t' = subst_bounds (map Free vs, t)
       
    49   in
       
    50     (Syntax.pretty_term_global thy t',
       
    51      Syntax.pretty_typ_global thy (fastype_of t'))
       
    52   end;
       
    53 
       
    54 fun appl_error thy prt vs Hs s f a =
       
    55   let
       
    56     val (pp_f, pp_fT) = pretty_prf thy vs Hs f;
       
    57     val (pp_a, pp_aT) = prt thy vs Hs a
       
    58   in
       
    59     error (cat_lines
       
    60       [s,
       
    61        "",
       
    62        Pretty.string_of (Pretty.block
       
    63          [Pretty.str "Operator:", Pretty.brk 2, pp_f,
       
    64            Pretty.str " ::", Pretty.brk 1, pp_fT]),
       
    65        Pretty.string_of (Pretty.block
       
    66          [Pretty.str "Operand:", Pretty.brk 3, pp_a,
       
    67            Pretty.str " ::", Pretty.brk 1, pp_aT]),
       
    68        ""])
       
    69   end;
       
    70 
       
    71 fun thm_of_proof thy prf =
       
    72   let
       
    73     val prf_names = Proofterm.fold_proof_terms Term.declare_term_frees (K I) prf Name.context;
       
    74     val lookup = lookup_thm thy;
       
    75 
       
    76     fun thm_of_atom thm Ts =
       
    77       let
       
    78         val tvars = Term.add_tvars (Thm.full_prop_of thm) [] |> rev;
       
    79         val (fmap, thm') = Thm.varifyT_global' [] thm;
       
    80         val ctye = map (pairself (Thm.ctyp_of thy))
       
    81           (map TVar tvars @ map (fn ((_, S), ixn) => TVar (ixn, S)) fmap ~~ Ts)
       
    82       in
       
    83         Thm.instantiate (ctye, []) (forall_intr_vars (Thm.forall_intr_frees thm'))
       
    84       end;
       
    85 
       
    86     fun thm_of _ _ (PThm (_, ((name, prop', SOME Ts), _))) =
       
    87           let
       
    88             val thm = Thm.unconstrainT (Drule.implies_intr_hyps (lookup name));
       
    89             val {prop, ...} = rep_thm thm;
       
    90             val _ = if is_equal prop prop' then () else
       
    91               error ("Duplicate use of theorem name " ^ quote name ^ "\n" ^
       
    92                 Syntax.string_of_term_global thy prop ^ "\n\n" ^
       
    93                 Syntax.string_of_term_global thy prop');
       
    94           in thm_of_atom thm Ts end
       
    95 
       
    96       | thm_of _ _ (PAxm (name, _, SOME Ts)) =
       
    97           thm_of_atom (Thm.axiom thy name) Ts
       
    98 
       
    99       | thm_of _ Hs (PBound i) = nth Hs i
       
   100 
       
   101       | thm_of (vs, names) Hs (Abst (s, SOME T, prf)) =
       
   102           let
       
   103             val (x, names') = Name.variant s names;
       
   104             val thm = thm_of ((x, T) :: vs, names') Hs prf
       
   105           in
       
   106             Thm.forall_intr (Thm.cterm_of thy (Free (x, T))) thm
       
   107           end
       
   108 
       
   109       | thm_of (vs, names) Hs (prf % SOME t) =
       
   110           let
       
   111             val thm = thm_of (vs, names) Hs prf;
       
   112             val ct = Thm.cterm_of thy (Term.subst_bounds (map Free vs, t));
       
   113           in
       
   114             Thm.forall_elim ct thm
       
   115             handle THM (s, _, _) => appl_error thy pretty_term vs Hs s prf t
       
   116           end
       
   117 
       
   118       | thm_of (vs, names) Hs (AbsP (s, SOME t, prf)) =
       
   119           let
       
   120             val ct = Thm.cterm_of thy (Term.subst_bounds (map Free vs, t));
       
   121             val thm = thm_of (vs, names) (Thm.assume ct :: Hs) prf;
       
   122           in
       
   123             Thm.implies_intr ct thm
       
   124           end
       
   125 
       
   126       | thm_of vars Hs (prf %% prf') =
       
   127           let
       
   128             val thm = beta_eta_convert (thm_of vars Hs prf);
       
   129             val thm' = beta_eta_convert (thm_of vars Hs prf');
       
   130           in
       
   131             Thm.implies_elim thm thm'
       
   132             handle THM (s, _, _) => appl_error thy pretty_prf (fst vars) Hs s prf prf'
       
   133           end
       
   134 
       
   135       | thm_of _ _ (Hyp t) = Thm.assume (Thm.cterm_of thy t)
       
   136 
       
   137       | thm_of _ _ _ = error "thm_of_proof: partial proof term";
       
   138 
       
   139   in beta_eta_convert (thm_of ([], prf_names) [] prf) end;
       
   140 
       
   141 end;