src/HOL/HOLCF/Fix.thy
changeset 62175 8ffc4d0e652d
parent 61998 b66d2ca1f907
child 67312 0d25e02759b7
equal deleted inserted replaced
62174:fae6233c5f37 62175:8ffc4d0e652d
     1 (*  Title:      HOL/HOLCF/Fix.thy
     1 (*  Title:      HOL/HOLCF/Fix.thy
     2     Author:     Franz Regensburger
     2     Author:     Franz Regensburger
     3     Author:     Brian Huffman
     3     Author:     Brian Huffman
     4 *)
     4 *)
     5 
     5 
     6 section {* Fixed point operator and admissibility *}
     6 section \<open>Fixed point operator and admissibility\<close>
     7 
     7 
     8 theory Fix
     8 theory Fix
     9 imports Cfun
     9 imports Cfun
    10 begin
    10 begin
    11 
    11 
    12 default_sort pcpo
    12 default_sort pcpo
    13 
    13 
    14 subsection {* Iteration *}
    14 subsection \<open>Iteration\<close>
    15 
    15 
    16 primrec iterate :: "nat \<Rightarrow> ('a::cpo \<rightarrow> 'a) \<rightarrow> ('a \<rightarrow> 'a)" where
    16 primrec iterate :: "nat \<Rightarrow> ('a::cpo \<rightarrow> 'a) \<rightarrow> ('a \<rightarrow> 'a)" where
    17     "iterate 0 = (\<Lambda> F x. x)"
    17     "iterate 0 = (\<Lambda> F x. x)"
    18   | "iterate (Suc n) = (\<Lambda> F x. F\<cdot>(iterate n\<cdot>F\<cdot>x))"
    18   | "iterate (Suc n) = (\<Lambda> F x. F\<cdot>(iterate n\<cdot>F\<cdot>x))"
    19 
    19 
    20 text {* Derive inductive properties of iterate from primitive recursion *}
    20 text \<open>Derive inductive properties of iterate from primitive recursion\<close>
    21 
    21 
    22 lemma iterate_0 [simp]: "iterate 0\<cdot>F\<cdot>x = x"
    22 lemma iterate_0 [simp]: "iterate 0\<cdot>F\<cdot>x = x"
    23 by simp
    23 by simp
    24 
    24 
    25 lemma iterate_Suc [simp]: "iterate (Suc n)\<cdot>F\<cdot>x = F\<cdot>(iterate n\<cdot>F\<cdot>x)"
    25 lemma iterate_Suc [simp]: "iterate (Suc n)\<cdot>F\<cdot>x = F\<cdot>(iterate n\<cdot>F\<cdot>x)"
    32 
    32 
    33 lemma iterate_iterate:
    33 lemma iterate_iterate:
    34   "iterate m\<cdot>F\<cdot>(iterate n\<cdot>F\<cdot>x) = iterate (m + n)\<cdot>F\<cdot>x"
    34   "iterate m\<cdot>F\<cdot>(iterate n\<cdot>F\<cdot>x) = iterate (m + n)\<cdot>F\<cdot>x"
    35 by (induct m) simp_all
    35 by (induct m) simp_all
    36 
    36 
    37 text {* The sequence of function iterations is a chain. *}
    37 text \<open>The sequence of function iterations is a chain.\<close>
    38 
    38 
    39 lemma chain_iterate [simp]: "chain (\<lambda>i. iterate i\<cdot>F\<cdot>\<bottom>)"
    39 lemma chain_iterate [simp]: "chain (\<lambda>i. iterate i\<cdot>F\<cdot>\<bottom>)"
    40 by (rule chainI, unfold iterate_Suc2, rule monofun_cfun_arg, rule minimal)
    40 by (rule chainI, unfold iterate_Suc2, rule monofun_cfun_arg, rule minimal)
    41 
    41 
    42 
    42 
    43 subsection {* Least fixed point operator *}
    43 subsection \<open>Least fixed point operator\<close>
    44 
    44 
    45 definition
    45 definition
    46   "fix" :: "('a \<rightarrow> 'a) \<rightarrow> 'a" where
    46   "fix" :: "('a \<rightarrow> 'a) \<rightarrow> 'a" where
    47   "fix = (\<Lambda> F. \<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>)"
    47   "fix = (\<Lambda> F. \<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>)"
    48 
    48 
    49 text {* Binder syntax for @{term fix} *}
    49 text \<open>Binder syntax for @{term fix}\<close>
    50 
    50 
    51 abbreviation
    51 abbreviation
    52   fix_syn :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a"  (binder "\<mu> " 10) where
    52   fix_syn :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a"  (binder "\<mu> " 10) where
    53   "fix_syn (\<lambda>x. f x) \<equiv> fix\<cdot>(\<Lambda> x. f x)"
    53   "fix_syn (\<lambda>x. f x) \<equiv> fix\<cdot>(\<Lambda> x. f x)"
    54 
    54 
    55 notation (ASCII)
    55 notation (ASCII)
    56   fix_syn  (binder "FIX " 10)
    56   fix_syn  (binder "FIX " 10)
    57 
    57 
    58 text {* Properties of @{term fix} *}
    58 text \<open>Properties of @{term fix}\<close>
    59 
    59 
    60 text {* direct connection between @{term fix} and iteration *}
    60 text \<open>direct connection between @{term fix} and iteration\<close>
    61 
    61 
    62 lemma fix_def2: "fix\<cdot>F = (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>)"
    62 lemma fix_def2: "fix\<cdot>F = (\<Squnion>i. iterate i\<cdot>F\<cdot>\<bottom>)"
    63 unfolding fix_def by simp
    63 unfolding fix_def by simp
    64 
    64 
    65 lemma iterate_below_fix: "iterate n\<cdot>f\<cdot>\<bottom> \<sqsubseteq> fix\<cdot>f"
    65 lemma iterate_below_fix: "iterate n\<cdot>f\<cdot>\<bottom> \<sqsubseteq> fix\<cdot>f"
    66   unfolding fix_def2
    66   unfolding fix_def2
    67   using chain_iterate by (rule is_ub_thelub)
    67   using chain_iterate by (rule is_ub_thelub)
    68 
    68 
    69 text {*
    69 text \<open>
    70   Kleene's fixed point theorems for continuous functions in pointed
    70   Kleene's fixed point theorems for continuous functions in pointed
    71   omega cpo's
    71   omega cpo's
    72 *}
    72 \<close>
    73 
    73 
    74 lemma fix_eq: "fix\<cdot>F = F\<cdot>(fix\<cdot>F)"
    74 lemma fix_eq: "fix\<cdot>F = F\<cdot>(fix\<cdot>F)"
    75 apply (simp add: fix_def2)
    75 apply (simp add: fix_def2)
    76 apply (subst lub_range_shift [of _ 1, symmetric])
    76 apply (subst lub_range_shift [of _ 1, symmetric])
    77 apply (rule chain_iterate)
    77 apply (rule chain_iterate)
   114 done
   114 done
   115 
   115 
   116 lemma fix_eq5: "f = fix\<cdot>F \<Longrightarrow> f\<cdot>x = F\<cdot>f\<cdot>x"
   116 lemma fix_eq5: "f = fix\<cdot>F \<Longrightarrow> f\<cdot>x = F\<cdot>f\<cdot>x"
   117 by (erule fix_eq4 [THEN cfun_fun_cong])
   117 by (erule fix_eq4 [THEN cfun_fun_cong])
   118 
   118 
   119 text {* strictness of @{term fix} *}
   119 text \<open>strictness of @{term fix}\<close>
   120 
   120 
   121 lemma fix_bottom_iff: "(fix\<cdot>F = \<bottom>) = (F\<cdot>\<bottom> = \<bottom>)"
   121 lemma fix_bottom_iff: "(fix\<cdot>F = \<bottom>) = (F\<cdot>\<bottom> = \<bottom>)"
   122 apply (rule iffI)
   122 apply (rule iffI)
   123 apply (erule subst)
   123 apply (erule subst)
   124 apply (rule fix_eq [symmetric])
   124 apply (rule fix_eq [symmetric])
   129 by (simp add: fix_bottom_iff)
   129 by (simp add: fix_bottom_iff)
   130 
   130 
   131 lemma fix_defined: "F\<cdot>\<bottom> \<noteq> \<bottom> \<Longrightarrow> fix\<cdot>F \<noteq> \<bottom>"
   131 lemma fix_defined: "F\<cdot>\<bottom> \<noteq> \<bottom> \<Longrightarrow> fix\<cdot>F \<noteq> \<bottom>"
   132 by (simp add: fix_bottom_iff)
   132 by (simp add: fix_bottom_iff)
   133 
   133 
   134 text {* @{term fix} applied to identity and constant functions *}
   134 text \<open>@{term fix} applied to identity and constant functions\<close>
   135 
   135 
   136 lemma fix_id: "(\<mu> x. x) = \<bottom>"
   136 lemma fix_id: "(\<mu> x. x) = \<bottom>"
   137 by (simp add: fix_strict)
   137 by (simp add: fix_strict)
   138 
   138 
   139 lemma fix_const: "(\<mu> x. c) = c"
   139 lemma fix_const: "(\<mu> x. c) = c"
   140 by (subst fix_eq, simp)
   140 by (subst fix_eq, simp)
   141 
   141 
   142 subsection {* Fixed point induction *}
   142 subsection \<open>Fixed point induction\<close>
   143 
   143 
   144 lemma fix_ind: "\<lbrakk>adm P; P \<bottom>; \<And>x. P x \<Longrightarrow> P (F\<cdot>x)\<rbrakk> \<Longrightarrow> P (fix\<cdot>F)"
   144 lemma fix_ind: "\<lbrakk>adm P; P \<bottom>; \<And>x. P x \<Longrightarrow> P (F\<cdot>x)\<rbrakk> \<Longrightarrow> P (fix\<cdot>F)"
   145 unfolding fix_def2
   145 unfolding fix_def2
   146 apply (erule admD)
   146 apply (erule admD)
   147 apply (rule chain_iterate)
   147 apply (rule chain_iterate)
   200   assumes "P \<bottom> \<bottom>"
   200   assumes "P \<bottom> \<bottom>"
   201   assumes "\<And>x y. P x y \<Longrightarrow> P (F x) (G y)"
   201   assumes "\<And>x y. P x y \<Longrightarrow> P (F x) (G y)"
   202   shows "P (fix\<cdot>(Abs_cfun F)) (fix\<cdot>(Abs_cfun G))"
   202   shows "P (fix\<cdot>(Abs_cfun F)) (fix\<cdot>(Abs_cfun G))"
   203 by (rule parallel_fix_ind, simp_all add: assms)
   203 by (rule parallel_fix_ind, simp_all add: assms)
   204 
   204 
   205 subsection {* Fixed-points on product types *}
   205 subsection \<open>Fixed-points on product types\<close>
   206 
   206 
   207 text {*
   207 text \<open>
   208   Bekic's Theorem: Simultaneous fixed points over pairs
   208   Bekic's Theorem: Simultaneous fixed points over pairs
   209   can be written in terms of separate fixed points.
   209   can be written in terms of separate fixed points.
   210 *}
   210 \<close>
   211 
   211 
   212 lemma fix_cprod:
   212 lemma fix_cprod:
   213   "fix\<cdot>(F::'a \<times> 'b \<rightarrow> 'a \<times> 'b) =
   213   "fix\<cdot>(F::'a \<times> 'b \<rightarrow> 'a \<times> 'b) =
   214    (\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))),
   214    (\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))),
   215     \<mu> y. snd (F\<cdot>(\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))), y)))"
   215     \<mu> y. snd (F\<cdot>(\<mu> x. fst (F\<cdot>(x, \<mu> y. snd (F\<cdot>(x, y)))), y)))"