equal
deleted
inserted
replaced
592 apply (simp) |
592 apply (simp) |
593 done |
593 done |
594 from a b show ?thesis by blast |
594 from a b show ?thesis by blast |
595 qed |
595 qed |
596 |
596 |
|
597 lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def) |
|
598 lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def) |
|
599 |
|
600 lemma pprt_eq_id[simp]: "0 <= x \<Longrightarrow> pprt x = x" |
|
601 by (simp add: pprt_def le_def_join join_aci) |
|
602 |
|
603 lemma nprt_eq_id[simp]: "x <= 0 \<Longrightarrow> nprt x = x" |
|
604 by (simp add: nprt_def le_def_meet meet_aci) |
|
605 |
|
606 lemma pprt_eq_0[simp]: "x <= 0 \<Longrightarrow> pprt x = 0" |
|
607 by (simp add: pprt_def le_def_join join_aci) |
|
608 |
|
609 lemma nprt_eq_0[simp]: "0 <= x \<Longrightarrow> nprt x = 0" |
|
610 by (simp add: nprt_def le_def_meet meet_aci) |
|
611 |
597 lemma join_0_imp_0: "join a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)" |
612 lemma join_0_imp_0: "join a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)" |
598 proof - |
613 proof - |
599 { |
614 { |
600 fix a::'a |
615 fix a::'a |
601 assume hyp: "join a (-a) = 0" |
616 assume hyp: "join a (-a) = 0" |
773 lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)" |
788 lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)" |
774 by (simp add: le_def_join pprt_def join_comm) |
789 by (simp add: le_def_join pprt_def join_comm) |
775 |
790 |
776 lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)" |
791 lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)" |
777 by (simp add: le_def_meet nprt_def meet_comm) |
792 by (simp add: le_def_meet nprt_def meet_comm) |
|
793 |
|
794 lemma pprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> pprt a <= pprt b" |
|
795 by (simp add: le_def_join pprt_def join_aci) |
|
796 |
|
797 lemma nprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> nprt a <= nprt b" |
|
798 by (simp add: le_def_meet nprt_def meet_aci) |
778 |
799 |
779 lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)" |
800 lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)" |
780 by (simp) |
801 by (simp) |
781 |
802 |
782 lemma imp_abs_id: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)" |
803 lemma imp_abs_id: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)" |