equal
deleted
inserted
replaced
3743 hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)" |
3743 hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)" |
3744 using sums_unique unfolding inverse_eq_divide by auto |
3744 using sums_unique unfolding inverse_eq_divide by auto |
3745 have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))" |
3745 have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))" |
3746 unfolding suminf_c'_eq_geom |
3746 unfolding suminf_c'_eq_geom |
3747 by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`]) |
3747 by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`]) |
3748 from DERIV_add_minus[OF this DERIV_arctan] |
3748 from DERIV_diff [OF this DERIV_arctan] |
3749 show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0" |
3749 show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0" |
3750 by auto |
3750 by auto |
3751 qed |
3751 qed |
3752 hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" |
3752 hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" |
3753 using `-r < a` `b < r` by auto |
3753 using `-r < a` `b < r` by auto |