src/HOL/Transcendental.thy
changeset 56261 918432e3fcfa
parent 56217 dc429a5b13c4
child 56371 fb9ae0727548
equal deleted inserted replaced
56260:3d79c132e657 56261:918432e3fcfa
  3743             hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
  3743             hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
  3744               using sums_unique unfolding inverse_eq_divide by auto
  3744               using sums_unique unfolding inverse_eq_divide by auto
  3745             have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
  3745             have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
  3746               unfolding suminf_c'_eq_geom
  3746               unfolding suminf_c'_eq_geom
  3747               by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`])
  3747               by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`])
  3748             from DERIV_add_minus[OF this DERIV_arctan]
  3748             from DERIV_diff [OF this DERIV_arctan]
  3749             show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
  3749             show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
  3750               by auto
  3750               by auto
  3751           qed
  3751           qed
  3752           hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
  3752           hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0"
  3753             using `-r < a` `b < r` by auto
  3753             using `-r < a` `b < r` by auto