src/HOL/Probability/Lebesgue_Integration.thy
changeset 41831 91a2b435dd7a
parent 41705 1100512e16d8
child 41981 cdf7693bbe08
equal deleted inserted replaced
41830:719b0a517c33 41831:91a2b435dd7a
   819 lemma (in measure_space) simple_integral_subalgebra:
   819 lemma (in measure_space) simple_integral_subalgebra:
   820   assumes N: "measure_space N" and [simp]: "space N = space M" "measure N = measure M"
   820   assumes N: "measure_space N" and [simp]: "space N = space M" "measure N = measure M"
   821   shows "integral\<^isup>S N = integral\<^isup>S M"
   821   shows "integral\<^isup>S N = integral\<^isup>S M"
   822   unfolding simple_integral_def_raw by simp
   822   unfolding simple_integral_def_raw by simp
   823 
   823 
       
   824 lemma measure_preservingD:
       
   825   "T \<in> measure_preserving A B \<Longrightarrow> X \<in> sets B \<Longrightarrow> measure A (T -` X \<inter> space A) = measure B X"
       
   826   unfolding measure_preserving_def by auto
       
   827 
   824 lemma (in measure_space) simple_integral_vimage:
   828 lemma (in measure_space) simple_integral_vimage:
   825   assumes T: "sigma_algebra M'" "T \<in> measurable M M'"
   829   assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'"
   826     and f: "simple_function M' f"
   830     and f: "simple_function M' f"
   827     and \<nu>: "\<And>A. A \<in> sets M' \<Longrightarrow> measure M' A = \<mu> (T -` A \<inter> space M)"
       
   828   shows "integral\<^isup>S M' f = (\<integral>\<^isup>S x. f (T x) \<partial>M)"
   831   shows "integral\<^isup>S M' f = (\<integral>\<^isup>S x. f (T x) \<partial>M)"
   829 proof -
   832 proof -
   830   interpret T: measure_space M' using \<nu> by (rule measure_space_vimage[OF T])
   833   interpret T: measure_space M' by (rule measure_space_vimage[OF T])
   831   show "integral\<^isup>S M' f = (\<integral>\<^isup>S x. f (T x) \<partial>M)"
   834   show "integral\<^isup>S M' f = (\<integral>\<^isup>S x. f (T x) \<partial>M)"
   832     unfolding simple_integral_def
   835     unfolding simple_integral_def
   833   proof (intro setsum_mono_zero_cong_right ballI)
   836   proof (intro setsum_mono_zero_cong_right ballI)
   834     show "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'"
   837     show "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'"
   835       using T unfolding measurable_def by auto
   838       using T unfolding measurable_def measure_preserving_def by auto
   836     show "finite (f ` space M')"
   839     show "finite (f ` space M')"
   837       using f unfolding simple_function_def by auto
   840       using f unfolding simple_function_def by auto
   838   next
   841   next
   839     fix i assume "i \<in> f ` space M' - (\<lambda>x. f (T x)) ` space M"
   842     fix i assume "i \<in> f ` space M' - (\<lambda>x. f (T x)) ` space M"
   840     then have "T -` (f -` {i} \<inter> space M') \<inter> space M = {}" by (auto simp: image_iff)
   843     then have "T -` (f -` {i} \<inter> space M') \<inter> space M = {}" by (auto simp: image_iff)
   841     with f[THEN T.simple_functionD(2), THEN \<nu>]
   844     with f[THEN T.simple_functionD(2), THEN measure_preservingD[OF T(2)], of "{i}"]
   842     show "i * T.\<mu> (f -` {i} \<inter> space M') = 0" by simp
   845     show "i * T.\<mu> (f -` {i} \<inter> space M') = 0" by simp
   843   next
   846   next
   844     fix i assume "i \<in> (\<lambda>x. f (T x)) ` space M"
   847     fix i assume "i \<in> (\<lambda>x. f (T x)) ` space M"
   845     then have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M"
   848     then have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M"
   846       using T unfolding measurable_def by auto
   849       using T unfolding measurable_def measure_preserving_def by auto
   847     with f[THEN T.simple_functionD(2), THEN \<nu>]
   850     with f[THEN T.simple_functionD(2), THEN measure_preservingD[OF T(2)], of "{i}"]
   848     show "i * T.\<mu> (f -` {i} \<inter> space M') = i * \<mu> ((\<lambda>x. f (T x)) -` {i} \<inter> space M)"
   851     show "i * T.\<mu> (f -` {i} \<inter> space M') = i * \<mu> ((\<lambda>x. f (T x)) -` {i} \<inter> space M)"
   849       by auto
   852       by auto
   850   qed
   853   qed
   851 qed
   854 qed
   852 
   855 
  1193   assumes "f \<up> u" and e: "\<And>i. simple_function M (f i)"
  1196   assumes "f \<up> u" and e: "\<And>i. simple_function M (f i)"
  1194   shows "(\<lambda>i. integral\<^isup>S M (f i)) \<up> integral\<^isup>P M u"
  1197   shows "(\<lambda>i. integral\<^isup>S M (f i)) \<up> integral\<^isup>P M u"
  1195   using positive_integral_isoton[OF `f \<up> u` e(1)[THEN borel_measurable_simple_function]]
  1198   using positive_integral_isoton[OF `f \<up> u` e(1)[THEN borel_measurable_simple_function]]
  1196   unfolding positive_integral_eq_simple_integral[OF e] .
  1199   unfolding positive_integral_eq_simple_integral[OF e] .
  1197 
  1200 
       
  1201 lemma measure_preservingD2:
       
  1202   "f \<in> measure_preserving A B \<Longrightarrow> f \<in> measurable A B"
       
  1203   unfolding measure_preserving_def by auto
       
  1204 
  1198 lemma (in measure_space) positive_integral_vimage:
  1205 lemma (in measure_space) positive_integral_vimage:
  1199   assumes T: "sigma_algebra M'" "T \<in> measurable M M'" and f: "f \<in> borel_measurable M'"
  1206   assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'" and f: "f \<in> borel_measurable M'"
  1200     and \<nu>: "\<And>A. A \<in> sets M' \<Longrightarrow> measure M' A = \<mu> (T -` A \<inter> space M)"
       
  1201   shows "integral\<^isup>P M' f = (\<integral>\<^isup>+ x. f (T x) \<partial>M)"
  1207   shows "integral\<^isup>P M' f = (\<integral>\<^isup>+ x. f (T x) \<partial>M)"
  1202 proof -
  1208 proof -
  1203   interpret T: measure_space M' using \<nu> by (rule measure_space_vimage[OF T])
  1209   interpret T: measure_space M' by (rule measure_space_vimage[OF T])
  1204   obtain f' where f': "f' \<up> f" "\<And>i. simple_function M' (f' i)"
  1210   obtain f' where f': "f' \<up> f" "\<And>i. simple_function M' (f' i)"
  1205     using T.borel_measurable_implies_simple_function_sequence[OF f] by blast
  1211     using T.borel_measurable_implies_simple_function_sequence[OF f] by blast
  1206   then have f: "(\<lambda>i x. f' i (T x)) \<up> (\<lambda>x. f (T x))" "\<And>i. simple_function M (\<lambda>x. f' i (T x))"
  1212   then have f: "(\<lambda>i x. f' i (T x)) \<up> (\<lambda>x. f (T x))" "\<And>i. simple_function M (\<lambda>x. f' i (T x))"
  1207     using simple_function_vimage[OF T] unfolding isoton_fun_expand by auto
  1213     using simple_function_vimage[OF T(1) measure_preservingD2[OF T(2)]] unfolding isoton_fun_expand by auto
  1208   show "integral\<^isup>P M' f = (\<integral>\<^isup>+ x. f (T x) \<partial>M)"
  1214   show "integral\<^isup>P M' f = (\<integral>\<^isup>+ x. f (T x) \<partial>M)"
  1209     using positive_integral_isoton_simple[OF f]
  1215     using positive_integral_isoton_simple[OF f]
  1210     using T.positive_integral_isoton_simple[OF f']
  1216     using T.positive_integral_isoton_simple[OF f']
  1211     by (simp add: simple_integral_vimage[OF T f'(2) \<nu>] isoton_def)
  1217     by (simp add: simple_integral_vimage[OF T f'(2)] isoton_def)
  1212 qed
  1218 qed
  1213 
  1219 
  1214 lemma (in measure_space) positive_integral_linear:
  1220 lemma (in measure_space) positive_integral_linear:
  1215   assumes f: "f \<in> borel_measurable M"
  1221   assumes f: "f \<in> borel_measurable M"
  1216   and g: "g \<in> borel_measurable M"
  1222   and g: "g \<in> borel_measurable M"
  1602   have "\<And>x. Real (- f x) = 0" using assms by simp
  1608   have "\<And>x. Real (- f x) = 0" using assms by simp
  1603   thus ?thesis by (simp del: Real_eq_0 add: lebesgue_integral_def)
  1609   thus ?thesis by (simp del: Real_eq_0 add: lebesgue_integral_def)
  1604 qed
  1610 qed
  1605 
  1611 
  1606 lemma (in measure_space) integral_vimage:
  1612 lemma (in measure_space) integral_vimage:
  1607   assumes T: "sigma_algebra M'" "T \<in> measurable M M'"
  1613   assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'"
  1608     and \<nu>: "\<And>A. A \<in> sets M' \<Longrightarrow> measure M' A = \<mu> (T -` A \<inter> space M)"
  1614   assumes f: "f \<in> borel_measurable M'"
  1609   assumes f: "integrable M' f"
  1615   shows "integral\<^isup>L M' f = (\<integral>x. f (T x) \<partial>M)"
  1610   shows "integrable M (\<lambda>x. f (T x))" (is ?P)
  1616 proof -
  1611     and "integral\<^isup>L M' f = (\<integral>x. f (T x) \<partial>M)" (is ?I)
  1617   interpret T: measure_space M' by (rule measure_space_vimage[OF T])
  1612 proof -
  1618   from measurable_comp[OF measure_preservingD2[OF T(2)], of f borel]
  1613   interpret T: measure_space M' using \<nu> by (rule measure_space_vimage[OF T])
       
  1614   from measurable_comp[OF T(2), of f borel]
       
  1615   have borel: "(\<lambda>x. Real (f x)) \<in> borel_measurable M'" "(\<lambda>x. Real (- f x)) \<in> borel_measurable M'"
  1619   have borel: "(\<lambda>x. Real (f x)) \<in> borel_measurable M'" "(\<lambda>x. Real (- f x)) \<in> borel_measurable M'"
  1616     and "(\<lambda>x. f (T x)) \<in> borel_measurable M"
  1620     and "(\<lambda>x. f (T x)) \<in> borel_measurable M"
  1617     using f unfolding integrable_def by (auto simp: comp_def)
  1621     using f by (auto simp: comp_def)
  1618   then show ?P ?I
  1622   then show ?thesis
  1619     using f unfolding lebesgue_integral_def integrable_def
  1623     using f unfolding lebesgue_integral_def integrable_def
  1620     by (auto simp: borel[THEN positive_integral_vimage[OF T], OF \<nu>])
  1624     by (auto simp: borel[THEN positive_integral_vimage[OF T]])
       
  1625 qed
       
  1626 
       
  1627 lemma (in measure_space) integrable_vimage:
       
  1628   assumes T: "sigma_algebra M'" "T \<in> measure_preserving M M'"
       
  1629   assumes f: "integrable M' f"
       
  1630   shows "integrable M (\<lambda>x. f (T x))"
       
  1631 proof -
       
  1632   interpret T: measure_space M' by (rule measure_space_vimage[OF T])
       
  1633   from measurable_comp[OF measure_preservingD2[OF T(2)], of f borel]
       
  1634   have borel: "(\<lambda>x. Real (f x)) \<in> borel_measurable M'" "(\<lambda>x. Real (- f x)) \<in> borel_measurable M'"
       
  1635     and "(\<lambda>x. f (T x)) \<in> borel_measurable M"
       
  1636     using f by (auto simp: comp_def)
       
  1637   then show ?thesis
       
  1638     using f unfolding lebesgue_integral_def integrable_def
       
  1639     by (auto simp: borel[THEN positive_integral_vimage[OF T]])
  1621 qed
  1640 qed
  1622 
  1641 
  1623 lemma (in measure_space) integral_minus[intro, simp]:
  1642 lemma (in measure_space) integral_minus[intro, simp]:
  1624   assumes "integrable M f"
  1643   assumes "integrable M f"
  1625   shows "integrable M (\<lambda>x. - f x)" "(\<integral>x. - f x \<partial>M) = - integral\<^isup>L M f"
  1644   shows "integrable M (\<lambda>x. - f x)" "(\<integral>x. - f x \<partial>M) = - integral\<^isup>L M f"