src/HOL/Library/List_Cset.thy
changeset 43241 93b1183e43e5
child 43307 1a32a953cef1
equal deleted inserted replaced
43240:da47097bd589 43241:93b1183e43e5
       
     1 
       
     2 (* Author: Florian Haftmann, TU Muenchen *)
       
     3 
       
     4 header {* implementation of Cset.sets based on lists *}
       
     5 
       
     6 theory List_Cset
       
     7 imports Cset
       
     8 begin
       
     9 
       
    10 declare mem_def [simp]
       
    11 
       
    12 definition set :: "'a list \<Rightarrow> 'a Cset.set" where
       
    13   "set xs = Set (List.set xs)"
       
    14 hide_const (open) set
       
    15 
       
    16 lemma member_set [simp]:
       
    17   "member (List_Cset.set xs) = set xs"
       
    18   by (simp add: set_def)
       
    19 hide_fact (open) member_set
       
    20 
       
    21 definition coset :: "'a list \<Rightarrow> 'a Cset.set" where
       
    22   "coset xs = Set (- set xs)"
       
    23 hide_const (open) coset
       
    24 
       
    25 lemma member_coset [simp]:
       
    26   "member (List_Cset.coset xs) = - set xs"
       
    27   by (simp add: coset_def)
       
    28 hide_fact (open) member_coset
       
    29 
       
    30 code_datatype List_Cset.set List_Cset.coset
       
    31 
       
    32 lemma member_code [code]:
       
    33   "member (List_Cset.set xs) = List.member xs"
       
    34   "member (List_Cset.coset xs) = Not \<circ> List.member xs"
       
    35   by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
       
    36 
       
    37 lemma member_image_UNIV [simp]:
       
    38   "member ` UNIV = UNIV"
       
    39 proof -
       
    40   have "\<And>A \<Colon> 'a set. \<exists>B \<Colon> 'a Cset.set. A = member B"
       
    41   proof
       
    42     fix A :: "'a set"
       
    43     show "A = member (Set A)" by simp
       
    44   qed
       
    45   then show ?thesis by (simp add: image_def)
       
    46 qed
       
    47 
       
    48 definition (in term_syntax)
       
    49   setify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
       
    50     \<Rightarrow> 'a Cset.set \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
       
    51   [code_unfold]: "setify xs = Code_Evaluation.valtermify List_Cset.set {\<cdot>} xs"
       
    52 
       
    53 notation fcomp (infixl "\<circ>>" 60)
       
    54 notation scomp (infixl "\<circ>\<rightarrow>" 60)
       
    55 
       
    56 instantiation Cset.set :: (random) random
       
    57 begin
       
    58 
       
    59 definition
       
    60   "Quickcheck.random i = Quickcheck.random i \<circ>\<rightarrow> (\<lambda>xs. Pair (setify xs))"
       
    61 
       
    62 instance ..
       
    63 
       
    64 end
       
    65 
       
    66 no_notation fcomp (infixl "\<circ>>" 60)
       
    67 no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
       
    68 
       
    69 subsection {* Basic operations *}
       
    70 
       
    71 lemma is_empty_set [code]:
       
    72   "Cset.is_empty (List_Cset.set xs) \<longleftrightarrow> List.null xs"
       
    73   by (simp add: is_empty_set null_def)
       
    74 hide_fact (open) is_empty_set
       
    75 
       
    76 lemma empty_set [code]:
       
    77   "bot = List_Cset.set []"
       
    78   by (simp add: set_def)
       
    79 hide_fact (open) empty_set
       
    80 
       
    81 lemma UNIV_set [code]:
       
    82   "top = List_Cset.coset []"
       
    83   by (simp add: coset_def)
       
    84 hide_fact (open) UNIV_set
       
    85 
       
    86 lemma remove_set [code]:
       
    87   "Cset.remove x (List_Cset.set xs) = List_Cset.set (removeAll x xs)"
       
    88   "Cset.remove x (List_Cset.coset xs) = List_Cset.coset (List.insert x xs)"
       
    89 by (simp_all add: set_def coset_def)
       
    90   (metis List.set_insert More_Set.remove_def remove_set_compl)
       
    91 
       
    92 lemma insert_set [code]:
       
    93   "Cset.insert x (List_Cset.set xs) = List_Cset.set (List.insert x xs)"
       
    94   "Cset.insert x (List_Cset.coset xs) = List_Cset.coset (removeAll x xs)"
       
    95   by (simp_all add: set_def coset_def)
       
    96 
       
    97 lemma map_set [code]:
       
    98   "Cset.map f (List_Cset.set xs) = List_Cset.set (remdups (List.map f xs))"
       
    99   by (simp add: set_def)
       
   100   
       
   101 lemma filter_set [code]:
       
   102   "Cset.filter P (List_Cset.set xs) = List_Cset.set (List.filter P xs)"
       
   103   by (simp add: set_def project_set)
       
   104 
       
   105 lemma forall_set [code]:
       
   106   "Cset.forall P (List_Cset.set xs) \<longleftrightarrow> list_all P xs"
       
   107   by (simp add: set_def list_all_iff)
       
   108 
       
   109 lemma exists_set [code]:
       
   110   "Cset.exists P (List_Cset.set xs) \<longleftrightarrow> list_ex P xs"
       
   111   by (simp add: set_def list_ex_iff)
       
   112 
       
   113 lemma card_set [code]:
       
   114   "Cset.card (List_Cset.set xs) = length (remdups xs)"
       
   115 proof -
       
   116   have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
       
   117     by (rule distinct_card) simp
       
   118   then show ?thesis by (simp add: set_def)
       
   119 qed
       
   120 
       
   121 lemma compl_set [simp, code]:
       
   122   "- List_Cset.set xs = List_Cset.coset xs"
       
   123   by (simp add: set_def coset_def)
       
   124 
       
   125 lemma compl_coset [simp, code]:
       
   126   "- List_Cset.coset xs = List_Cset.set xs"
       
   127   by (simp add: set_def coset_def)
       
   128 
       
   129 context complete_lattice
       
   130 begin
       
   131 
       
   132 lemma Infimum_inf [code]:
       
   133   "Infimum (List_Cset.set As) = foldr inf As top"
       
   134   "Infimum (List_Cset.coset []) = bot"
       
   135   by (simp_all add: Inf_set_foldr Inf_UNIV)
       
   136 
       
   137 lemma Supremum_sup [code]:
       
   138   "Supremum (List_Cset.set As) = foldr sup As bot"
       
   139   "Supremum (List_Cset.coset []) = top"
       
   140   by (simp_all add: Sup_set_foldr Sup_UNIV)
       
   141 
       
   142 end
       
   143 
       
   144 
       
   145 subsection {* Derived operations *}
       
   146 
       
   147 lemma subset_eq_forall [code]:
       
   148   "A \<le> B \<longleftrightarrow> Cset.forall (member B) A"
       
   149   by (simp add: subset_eq)
       
   150 
       
   151 lemma subset_subset_eq [code]:
       
   152   "A < B \<longleftrightarrow> A \<le> B \<and> \<not> B \<le> (A :: 'a Cset.set)"
       
   153   by (fact less_le_not_le)
       
   154 
       
   155 instantiation Cset.set :: (type) equal
       
   156 begin
       
   157 
       
   158 definition [code]:
       
   159   "HOL.equal A B \<longleftrightarrow> A \<le> B \<and> B \<le> (A :: 'a Cset.set)"
       
   160 
       
   161 instance proof
       
   162 qed (simp add: equal_set_def set_eq [symmetric] Cset.set_eq_iff)
       
   163 
       
   164 end
       
   165 
       
   166 lemma [code nbe]:
       
   167   "HOL.equal (A :: 'a Cset.set) A \<longleftrightarrow> True"
       
   168   by (fact equal_refl)
       
   169 
       
   170 
       
   171 subsection {* Functorial operations *}
       
   172 
       
   173 lemma inter_project [code]:
       
   174   "inf A (List_Cset.set xs) = List_Cset.set (List.filter (Cset.member A) xs)"
       
   175   "inf A (List_Cset.coset xs) = foldr Cset.remove xs A"
       
   176 proof -
       
   177   show "inf A (List_Cset.set xs) = List_Cset.set (List.filter (member A) xs)"
       
   178     by (simp add: inter project_def set_def)
       
   179   have *: "\<And>x::'a. Cset.remove = (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member)"
       
   180     by (simp add: fun_eq_iff More_Set.remove_def)
       
   181   have "member \<circ> fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs =
       
   182     fold More_Set.remove xs \<circ> member"
       
   183     by (rule fold_commute) (simp add: fun_eq_iff)
       
   184   then have "fold More_Set.remove xs (member A) = 
       
   185     member (fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs A)"
       
   186     by (simp add: fun_eq_iff)
       
   187   then have "inf A (List_Cset.coset xs) = fold Cset.remove xs A"
       
   188     by (simp add: Diff_eq [symmetric] minus_set *)
       
   189   moreover have "\<And>x y :: 'a. Cset.remove y \<circ> Cset.remove x = Cset.remove x \<circ> Cset.remove y"
       
   190     by (auto simp add: More_Set.remove_def * intro: ext)
       
   191   ultimately show "inf A (List_Cset.coset xs) = foldr Cset.remove xs A"
       
   192     by (simp add: foldr_fold)
       
   193 qed
       
   194 
       
   195 lemma subtract_remove [code]:
       
   196   "A - List_Cset.set xs = foldr Cset.remove xs A"
       
   197   "A - List_Cset.coset xs = List_Cset.set (List.filter (member A) xs)"
       
   198   by (simp_all only: diff_eq compl_set compl_coset inter_project)
       
   199 
       
   200 lemma union_insert [code]:
       
   201   "sup (List_Cset.set xs) A = foldr Cset.insert xs A"
       
   202   "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \<circ> member A) xs)"
       
   203 proof -
       
   204   have *: "\<And>x::'a. Cset.insert = (\<lambda>x. Set \<circ> Set.insert x \<circ> member)"
       
   205     by (simp add: fun_eq_iff)
       
   206   have "member \<circ> fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs =
       
   207     fold Set.insert xs \<circ> member"
       
   208     by (rule fold_commute) (simp add: fun_eq_iff)
       
   209   then have "fold Set.insert xs (member A) =
       
   210     member (fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs A)"
       
   211     by (simp add: fun_eq_iff)
       
   212   then have "sup (List_Cset.set xs) A = fold Cset.insert xs A"
       
   213     by (simp add: union_set *)
       
   214   moreover have "\<And>x y :: 'a. Cset.insert y \<circ> Cset.insert x = Cset.insert x \<circ> Cset.insert y"
       
   215     by (auto simp add: * intro: ext)
       
   216   ultimately show "sup (List_Cset.set xs) A = foldr Cset.insert xs A"
       
   217     by (simp add: foldr_fold)
       
   218   show "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \<circ> member A) xs)"
       
   219     by (auto simp add: coset_def)
       
   220 qed
       
   221 
       
   222 end