src/HOL/Probability/Projective_Family.thy
changeset 50095 94d7dfa9f404
parent 50087 635d73673b5e
child 50101 a3bede207a04
equal deleted inserted replaced
50094:84ddcf5364b4 50095:94d7dfa9f404
    55   shows "emeasure (Pi\<^isub>M L M) (prod_emb L M J X) = emeasure (Pi\<^isub>M J M) X"
    55   shows "emeasure (Pi\<^isub>M L M) (prod_emb L M J X) = emeasure (Pi\<^isub>M J M) X"
    56   by (subst distr_restrict[OF L])
    56   by (subst distr_restrict[OF L])
    57      (simp add: prod_emb_def space_PiM emeasure_distr measurable_restrict_subset L X)
    57      (simp add: prod_emb_def space_PiM emeasure_distr measurable_restrict_subset L X)
    58 
    58 
    59 definition
    59 definition
    60   PiP :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i set \<Rightarrow> ('i \<Rightarrow> 'a) measure) \<Rightarrow> ('i \<Rightarrow> 'a) measure" where
    60   limP :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i set \<Rightarrow> ('i \<Rightarrow> 'a) measure) \<Rightarrow> ('i \<Rightarrow> 'a) measure" where
    61   "PiP I M P = extend_measure (\<Pi>\<^isub>E i\<in>I. space (M i))
    61   "limP I M P = extend_measure (\<Pi>\<^isub>E i\<in>I. space (M i))
    62     {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}
    62     {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}
    63     (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^isub>E j\<in>J. X j))
    63     (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^isub>E j\<in>J. X j))
    64     (\<lambda>(J, X). emeasure (P J) (Pi\<^isub>E J X))"
    64     (\<lambda>(J, X). emeasure (P J) (Pi\<^isub>E J X))"
    65 
    65 
    66 lemma space_PiP[simp]: "space (PiP I M P) = space (PiM I M)"
    66 abbreviation "lim\<^isub>P \<equiv> limP"
    67   by (auto simp add: PiP_def space_PiM prod_emb_def intro!: space_extend_measure)
    67 
    68 
    68 lemma space_limP[simp]: "space (limP I M P) = space (PiM I M)"
    69 lemma sets_PiP[simp]: "sets (PiP I M P) = sets (PiM I M)"
    69   by (auto simp add: limP_def space_PiM prod_emb_def intro!: space_extend_measure)
    70   by (auto simp add: PiP_def sets_PiM prod_algebra_def prod_emb_def intro!: sets_extend_measure)
    70 
    71 
    71 lemma sets_limP[simp]: "sets (limP I M P) = sets (PiM I M)"
    72 lemma measurable_PiP1[simp]: "measurable (PiP I M P) M' = measurable (\<Pi>\<^isub>M i\<in>I. M i) M'"
    72   by (auto simp add: limP_def sets_PiM prod_algebra_def prod_emb_def intro!: sets_extend_measure)
       
    73 
       
    74 lemma measurable_limP1[simp]: "measurable (limP I M P) M' = measurable (\<Pi>\<^isub>M i\<in>I. M i) M'"
    73   unfolding measurable_def by auto
    75   unfolding measurable_def by auto
    74 
    76 
    75 lemma measurable_PiP2[simp]: "measurable M' (PiP I M P) = measurable M' (\<Pi>\<^isub>M i\<in>I. M i)"
    77 lemma measurable_limP2[simp]: "measurable M' (limP I M P) = measurable M' (\<Pi>\<^isub>M i\<in>I. M i)"
    76   unfolding measurable_def by auto
    78   unfolding measurable_def by auto
    77 
    79 
    78 locale projective_family =
    80 locale projective_family =
    79   fixes I::"'i set" and P::"'i set \<Rightarrow> ('i \<Rightarrow> 'a) measure" and M::"('i \<Rightarrow> 'a measure)"
    81   fixes I::"'i set" and P::"'i set \<Rightarrow> ('i \<Rightarrow> 'a) measure" and M::"('i \<Rightarrow> 'a measure)"
    80   assumes projective: "\<And>J H X. J \<noteq> {} \<Longrightarrow> J \<subseteq> H \<Longrightarrow> H \<subseteq> I \<Longrightarrow> finite H \<Longrightarrow> X \<in> sets (PiM J M) \<Longrightarrow>
    82   assumes projective: "\<And>J H X. J \<noteq> {} \<Longrightarrow> J \<subseteq> H \<Longrightarrow> H \<subseteq> I \<Longrightarrow> finite H \<Longrightarrow> X \<in> sets (PiM J M) \<Longrightarrow>
    82   assumes prob_space: "\<And>J. finite J \<Longrightarrow> prob_space (P J)"
    84   assumes prob_space: "\<And>J. finite J \<Longrightarrow> prob_space (P J)"
    83   assumes proj_space: "\<And>J. finite J \<Longrightarrow> space (P J) = space (PiM J M)"
    85   assumes proj_space: "\<And>J. finite J \<Longrightarrow> space (P J) = space (PiM J M)"
    84   assumes proj_sets: "\<And>J. finite J \<Longrightarrow> sets (P J) = sets (PiM J M)"
    86   assumes proj_sets: "\<And>J. finite J \<Longrightarrow> sets (P J) = sets (PiM J M)"
    85 begin
    87 begin
    86 
    88 
    87 lemma emeasure_PiP:
    89 lemma emeasure_limP:
    88   assumes "finite J"
    90   assumes "finite J"
    89   assumes "J \<subseteq> I"
    91   assumes "J \<subseteq> I"
    90   assumes A: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> sets (M i)"
    92   assumes A: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> sets (M i)"
    91   shows "emeasure (PiP J M P) (Pi\<^isub>E J A) = emeasure (P J) (Pi\<^isub>E J A)"
    93   shows "emeasure (limP J M P) (Pi\<^isub>E J A) = emeasure (P J) (Pi\<^isub>E J A)"
    92 proof -
    94 proof -
    93   have "Pi\<^isub>E J (restrict A J) \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
    95   have "Pi\<^isub>E J (restrict A J) \<subseteq> (\<Pi>\<^isub>E i\<in>J. space (M i))"
    94   proof safe
    96   proof safe
    95     fix x j assume "x \<in> Pi J (restrict A J)" "j \<in> J"
    97     fix x j assume "x \<in> Pi J (restrict A J)" "j \<in> J"
    96     hence "x j \<in> restrict A J j" by (auto simp: Pi_def)
    98     hence "x j \<in> restrict A J j" by (auto simp: Pi_def)
    97     also have "\<dots> \<subseteq> space (M j)" using sets_into_space A `j \<in> J` by auto
    99     also have "\<dots> \<subseteq> space (M j)" using sets_into_space A `j \<in> J` by auto
    98     finally show "x j \<in> space (M j)" .
   100     finally show "x j \<in> space (M j)" .
    99   qed
   101   qed
   100   hence "emeasure (PiP J M P) (Pi\<^isub>E J A) =
   102   hence "emeasure (limP J M P) (Pi\<^isub>E J A) =
   101     emeasure (PiP J M P) (prod_emb J M J (Pi\<^isub>E J A))"
   103     emeasure (limP J M P) (prod_emb J M J (Pi\<^isub>E J A))"
   102     using assms(1-3) sets_into_space by (auto simp add: prod_emb_id Pi_def)
   104     using assms(1-3) sets_into_space by (auto simp add: prod_emb_id Pi_def)
   103   also have "\<dots> = emeasure (P J) (Pi\<^isub>E J A)"
   105   also have "\<dots> = emeasure (P J) (Pi\<^isub>E J A)"
   104   proof (rule emeasure_extend_measure_Pair[OF PiP_def])
   106   proof (rule emeasure_extend_measure_Pair[OF limP_def])
   105     show "positive (sets (PiP J M P)) (P J)" unfolding positive_def by auto
   107     show "positive (sets (limP J M P)) (P J)" unfolding positive_def by auto
   106     show "countably_additive (sets (PiP J M P)) (P J)" unfolding countably_additive_def
   108     show "countably_additive (sets (limP J M P)) (P J)" unfolding countably_additive_def
   107       by (auto simp: suminf_emeasure proj_sets[OF `finite J`])
   109       by (auto simp: suminf_emeasure proj_sets[OF `finite J`])
   108     show "(J \<noteq> {} \<or> J = {}) \<and> finite J \<and> J \<subseteq> J \<and> A \<in> (\<Pi> j\<in>J. sets (M j))"
   110     show "(J \<noteq> {} \<or> J = {}) \<and> finite J \<and> J \<subseteq> J \<and> A \<in> (\<Pi> j\<in>J. sets (M j))"
   109       using assms by auto
   111       using assms by auto
   110     fix K and X::"'i \<Rightarrow> 'a set"
   112     fix K and X::"'i \<Rightarrow> 'a set"
   111     show "prod_emb J M K (Pi\<^isub>E K X) \<in> Pow (\<Pi>\<^isub>E i\<in>J. space (M i))"
   113     show "prod_emb J M K (Pi\<^isub>E K X) \<in> Pow (\<Pi>\<^isub>E i\<in>J. space (M i))"
   119       done
   121       done
   120   qed
   122   qed
   121   finally show ?thesis .
   123   finally show ?thesis .
   122 qed
   124 qed
   123 
   125 
   124 lemma PiP_finite:
   126 lemma limP_finite:
   125   assumes "finite J"
   127   assumes "finite J"
   126   assumes "J \<subseteq> I"
   128   assumes "J \<subseteq> I"
   127   shows "PiP J M P = P J" (is "?P = _")
   129   shows "limP J M P = P J" (is "?P = _")
   128 proof (rule measure_eqI_generator_eq)
   130 proof (rule measure_eqI_generator_eq)
   129   let ?J = "{Pi\<^isub>E J E | E. \<forall>i\<in>J. E i \<in> sets (M i)}"
   131   let ?J = "{Pi\<^isub>E J E | E. \<forall>i\<in>J. E i \<in> sets (M i)}"
   130   let ?F = "\<lambda>i. \<Pi>\<^isub>E k\<in>J. space (M k)"
   132   let ?F = "\<lambda>i. \<Pi>\<^isub>E k\<in>J. space (M k)"
   131   let ?\<Omega> = "(\<Pi>\<^isub>E k\<in>J. space (M k))"
   133   let ?\<Omega> = "(\<Pi>\<^isub>E k\<in>J. space (M k))"
   132   show "Int_stable ?J"
   134   show "Int_stable ?J"
   133     by (rule Int_stable_PiE)
   135     by (rule Int_stable_PiE)
   134   interpret prob_space "P J" using prob_space `finite J` by simp
   136   interpret prob_space "P J" using prob_space `finite J` by simp
   135   show "emeasure ?P (?F _) \<noteq> \<infinity>" using assms `finite J` by (auto simp: emeasure_PiP)
   137   show "emeasure ?P (?F _) \<noteq> \<infinity>" using assms `finite J` by (auto simp: emeasure_limP)
   136   show "?J \<subseteq> Pow ?\<Omega>" by (auto simp: Pi_iff dest: sets_into_space)
   138   show "?J \<subseteq> Pow ?\<Omega>" by (auto simp: Pi_iff dest: sets_into_space)
   137   show "sets (PiP J M P) = sigma_sets ?\<Omega> ?J" "sets (P J) = sigma_sets ?\<Omega> ?J"
   139   show "sets (limP J M P) = sigma_sets ?\<Omega> ?J" "sets (P J) = sigma_sets ?\<Omega> ?J"
   138     using `finite J` proj_sets by (simp_all add: sets_PiM prod_algebra_eq_finite Pi_iff)
   140     using `finite J` proj_sets by (simp_all add: sets_PiM prod_algebra_eq_finite Pi_iff)
   139   fix X assume "X \<in> ?J"
   141   fix X assume "X \<in> ?J"
   140   then obtain E where X: "X = Pi\<^isub>E J E" and E: "\<forall>i\<in>J. E i \<in> sets (M i)" by auto
   142   then obtain E where X: "X = Pi\<^isub>E J E" and E: "\<forall>i\<in>J. E i \<in> sets (M i)" by auto
   141   with `finite J` have "X \<in> sets (PiP J M P)" by simp
   143   with `finite J` have "X \<in> sets (limP J M P)" by simp
   142   have emb_self: "prod_emb J M J (Pi\<^isub>E J E) = Pi\<^isub>E J E"
   144   have emb_self: "prod_emb J M J (Pi\<^isub>E J E) = Pi\<^isub>E J E"
   143     using E sets_into_space
   145     using E sets_into_space
   144     by (auto intro!: prod_emb_PiE_same_index)
   146     by (auto intro!: prod_emb_PiE_same_index)
   145   show "emeasure (PiP J M P) X = emeasure (P J) X"
   147   show "emeasure (limP J M P) X = emeasure (P J) X"
   146     unfolding X using E
   148     unfolding X using E
   147     by (intro emeasure_PiP assms) simp
   149     by (intro emeasure_limP assms) simp
   148 qed (insert `finite J`, auto intro!: prod_algebraI_finite)
   150 qed (insert `finite J`, auto intro!: prod_algebraI_finite)
   149 
   151 
   150 lemma emeasure_fun_emb[simp]:
   152 lemma emeasure_fun_emb[simp]:
   151   assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" "L \<subseteq> I" and X: "X \<in> sets (PiM J M)"
   153   assumes L: "J \<noteq> {}" "J \<subseteq> L" "finite L" "L \<subseteq> I" and X: "X \<in> sets (PiM J M)"
   152   shows "emeasure (PiP L M P) (prod_emb L M J X) = emeasure (PiP J M P) X"
   154   shows "emeasure (limP L M P) (prod_emb L M J X) = emeasure (limP J M P) X"
   153   using assms
   155   using assms
   154   by (subst PiP_finite) (auto simp: PiP_finite finite_subset projective)
   156   by (subst limP_finite) (auto simp: limP_finite finite_subset projective)
   155 
   157 
   156 lemma prod_emb_injective:
   158 lemma prod_emb_injective:
   157   assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
   159   assumes "J \<noteq> {}" "J \<subseteq> L" "finite J" and sets: "X \<in> sets (Pi\<^isub>M J M)" "Y \<in> sets (Pi\<^isub>M J M)"
   158   assumes "prod_emb L M J X = prod_emb L M J Y"
   160   assumes "prod_emb L M J X = prod_emb L M J Y"
   159   shows "X = Y"
   161   shows "X = Y"
   233   "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> generator"
   235   "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> A = emb I J X \<Longrightarrow> A \<in> generator"
   234   unfolding generator_def by auto
   236   unfolding generator_def by auto
   235 
   237 
   236 definition
   238 definition
   237   "\<mu>G A =
   239   "\<mu>G A =
   238     (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = emeasure (PiP J M P) X))"
   240     (THE x. \<forall>J. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> J \<subseteq> I \<longrightarrow> (\<forall>X\<in>sets (Pi\<^isub>M J M). A = emb I J X \<longrightarrow> x = emeasure (limP J M P) X))"
   239 
   241 
   240 lemma \<mu>G_spec:
   242 lemma \<mu>G_spec:
   241   assumes J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
   243   assumes J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
   242   shows "\<mu>G A = emeasure (PiP J M P) X"
   244   shows "\<mu>G A = emeasure (limP J M P) X"
   243   unfolding \<mu>G_def
   245   unfolding \<mu>G_def
   244 proof (intro the_equality allI impI ballI)
   246 proof (intro the_equality allI impI ballI)
   245   fix K Y assume K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "A = emb I K Y" "Y \<in> sets (Pi\<^isub>M K M)"
   247   fix K Y assume K: "K \<noteq> {}" "finite K" "K \<subseteq> I" "A = emb I K Y" "Y \<in> sets (Pi\<^isub>M K M)"
   246   have "emeasure (PiP K M P) Y = emeasure (PiP (K \<union> J) M P) (emb (K \<union> J) K Y)"
   248   have "emeasure (limP K M P) Y = emeasure (limP (K \<union> J) M P) (emb (K \<union> J) K Y)"
   247     using K J by simp
   249     using K J by simp
   248   also have "emb (K \<union> J) K Y = emb (K \<union> J) J X"
   250   also have "emb (K \<union> J) K Y = emb (K \<union> J) J X"
   249     using K J by (simp add: prod_emb_injective[of "K \<union> J" I])
   251     using K J by (simp add: prod_emb_injective[of "K \<union> J" I])
   250   also have "emeasure (PiP (K \<union> J) M P) (emb (K \<union> J) J X) = emeasure (PiP J M P) X"
   252   also have "emeasure (limP (K \<union> J) M P) (emb (K \<union> J) J X) = emeasure (limP J M P) X"
   251     using K J by simp
   253     using K J by simp
   252   finally show "emeasure (PiP J M P) X = emeasure (PiP K M P) Y" ..
   254   finally show "emeasure (limP J M P) X = emeasure (limP K M P) Y" ..
   253 qed (insert J, force)
   255 qed (insert J, force)
   254 
   256 
   255 lemma \<mu>G_eq:
   257 lemma \<mu>G_eq:
   256   "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = emeasure (PiP J M P) X"
   258   "J \<noteq> {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> X \<in> sets (Pi\<^isub>M J M) \<Longrightarrow> \<mu>G (emb I J X) = emeasure (limP J M P) X"
   257   by (intro \<mu>G_spec) auto
   259   by (intro \<mu>G_spec) auto
   258 
   260 
   259 lemma generator_Ex:
   261 lemma generator_Ex:
   260   assumes *: "A \<in> generator"
   262   assumes *: "A \<in> generator"
   261   shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = emeasure (PiP J M P) X"
   263   shows "\<exists>J X. J \<noteq> {} \<and> finite J \<and> J \<subseteq> I \<and> X \<in> sets (Pi\<^isub>M J M) \<and> A = emb I J X \<and> \<mu>G A = emeasure (limP J M P) X"
   262 proof -
   264 proof -
   263   from * obtain J X where J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
   265   from * obtain J X where J: "J \<noteq> {}" "finite J" "J \<subseteq> I" "A = emb I J X" "X \<in> sets (Pi\<^isub>M J M)"
   264     unfolding generator_def by auto
   266     unfolding generator_def by auto
   265   with \<mu>G_spec[OF this] show ?thesis by auto
   267   with \<mu>G_spec[OF this] show ?thesis by auto
   266 qed
   268 qed
   267 
   269 
   268 lemma generatorE:
   270 lemma generatorE:
   269   assumes A: "A \<in> generator"
   271   assumes A: "A \<in> generator"
   270   obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = emeasure (PiP J M P) X"
   272   obtains J X where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A" "\<mu>G A = emeasure (limP J M P) X"
   271 proof -
   273 proof -
   272   from generator_Ex[OF A] obtain X J where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A"
   274   from generator_Ex[OF A] obtain X J where "J \<noteq> {}" "finite J" "J \<subseteq> I" "X \<in> sets (Pi\<^isub>M J M)" "emb I J X = A"
   273     "\<mu>G A = emeasure (PiP J M P) X" by auto
   275     "\<mu>G A = emeasure (limP J M P) X" by auto
   274   then show thesis by (intro that) auto
   276   then show thesis by (intro that) auto
   275 qed
   277 qed
   276 
   278 
   277 lemma merge_sets:
   279 lemma merge_sets:
   278   "J \<inter> K = {} \<Longrightarrow> A \<in> sets (Pi\<^isub>M (J \<union> K) M) \<Longrightarrow> x \<in> space (Pi\<^isub>M J M) \<Longrightarrow> (\<lambda>y. merge J K (x,y)) -` A \<inter> space (Pi\<^isub>M K M) \<in> sets (Pi\<^isub>M K M)"
   280   "J \<inter> K = {} \<Longrightarrow> A \<in> sets (Pi\<^isub>M (J \<union> K) M) \<Longrightarrow> x \<in> space (Pi\<^isub>M J M) \<Longrightarrow> (\<lambda>y. merge J K (x,y)) -` A \<inter> space (Pi\<^isub>M K M) \<in> sets (Pi\<^isub>M K M)"
   332       done
   334       done
   333     have AB: "A = emb I (J \<union> K) (emb (J \<union> K) J X)" "B = emb I (J \<union> K) (emb (J \<union> K) K Y)"
   335     have AB: "A = emb I (J \<union> K) (emb (J \<union> K) J X)" "B = emb I (J \<union> K) (emb (J \<union> K) K Y)"
   334       using J K by simp_all
   336       using J K by simp_all
   335     then have "\<mu>G (A \<union> B) = \<mu>G (emb I (J \<union> K) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y))"
   337     then have "\<mu>G (A \<union> B) = \<mu>G (emb I (J \<union> K) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y))"
   336       by simp
   338       by simp
   337     also have "\<dots> = emeasure (PiP (J \<union> K) M P) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)"
   339     also have "\<dots> = emeasure (limP (J \<union> K) M P) (emb (J \<union> K) J X \<union> emb (J \<union> K) K Y)"
   338       using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq Un del: prod_emb_Un)
   340       using JK J(1, 4) K(1, 4) by (simp add: \<mu>G_eq Un del: prod_emb_Un)
   339     also have "\<dots> = \<mu>G A + \<mu>G B"
   341     also have "\<dots> = \<mu>G A + \<mu>G B"
   340       using J K JK_disj by (simp add: plus_emeasure[symmetric])
   342       using J K JK_disj by (simp add: plus_emeasure[symmetric])
   341     finally show "\<mu>G (A \<union> B) = \<mu>G A + \<mu>G B" .
   343     finally show "\<mu>G (A \<union> B) = \<mu>G A + \<mu>G B" .
   342   qed
   344   qed
   354             (\<forall>i. emeasure (Pi\<^isub>M J M) (A i) \<noteq> \<infinity>)" using sigma_finite[OF `finite J`]
   356             (\<forall>i. emeasure (Pi\<^isub>M J M) (A i) \<noteq> \<infinity>)" using sigma_finite[OF `finite J`]
   355     by (auto simp add: sigma_finite_measure_def)
   357     by (auto simp add: sigma_finite_measure_def)
   356   show "emeasure (Pi\<^isub>M J M) (space (Pi\<^isub>M J M)) = 1" by (rule f.emeasure_space_1)
   358   show "emeasure (Pi\<^isub>M J M) (space (Pi\<^isub>M J M)) = 1" by (rule f.emeasure_space_1)
   357 qed simp_all
   359 qed simp_all
   358 
   360 
   359 lemma (in product_prob_space) PiP_PiM_finite[simp]:
   361 lemma (in product_prob_space) limP_PiM_finite[simp]:
   360   assumes "J \<noteq> {}" "finite J" "J \<subseteq> I" shows "PiP J M (\<lambda>J. PiM J M) = PiM J M"
   362   assumes "J \<noteq> {}" "finite J" "J \<subseteq> I" shows "limP J M (\<lambda>J. PiM J M) = PiM J M"
   361   using assms by (simp add: PiP_finite)
   363   using assms by (simp add: limP_finite)
   362 
   364 
   363 end
   365 end