src/CCL/Term.thy
changeset 58977 9576b510f6a2
parent 58976 b38a54bbfbd6
child 59498 50b60f501b05
equal deleted inserted replaced
58976:b38a54bbfbd6 58977:9576b510f6a2
    11 
    11 
    12 consts
    12 consts
    13 
    13 
    14   one        :: "i"
    14   one        :: "i"
    15 
    15 
    16   "if"       :: "[i,i,i]=>i"           ("(3if _/ then _/ else _)" [0,0,60] 60)
    16   "if"       :: "[i,i,i]\<Rightarrow>i"           ("(3if _/ then _/ else _)" [0,0,60] 60)
    17 
    17 
    18   inl        :: "i=>i"
    18   inl        :: "i\<Rightarrow>i"
    19   inr        :: "i=>i"
    19   inr        :: "i\<Rightarrow>i"
    20   when       :: "[i,i=>i,i=>i]=>i"
    20   when       :: "[i,i\<Rightarrow>i,i\<Rightarrow>i]\<Rightarrow>i"
    21 
    21 
    22   split      :: "[i,[i,i]=>i]=>i"
    22   split      :: "[i,[i,i]\<Rightarrow>i]\<Rightarrow>i"
    23   fst        :: "i=>i"
    23   fst        :: "i\<Rightarrow>i"
    24   snd        :: "i=>i"
    24   snd        :: "i\<Rightarrow>i"
    25   thd        :: "i=>i"
    25   thd        :: "i\<Rightarrow>i"
    26 
    26 
    27   zero       :: "i"
    27   zero       :: "i"
    28   succ       :: "i=>i"
    28   succ       :: "i\<Rightarrow>i"
    29   ncase      :: "[i,i,i=>i]=>i"
    29   ncase      :: "[i,i,i\<Rightarrow>i]\<Rightarrow>i"
    30   nrec       :: "[i,i,[i,i]=>i]=>i"
    30   nrec       :: "[i,i,[i,i]\<Rightarrow>i]\<Rightarrow>i"
    31 
    31 
    32   nil        :: "i"                        ("([])")
    32   nil        :: "i"                        ("([])")
    33   cons       :: "[i,i]=>i"                 (infixr "$" 80)
    33   cons       :: "[i,i]\<Rightarrow>i"                 (infixr "$" 80)
    34   lcase      :: "[i,i,[i,i]=>i]=>i"
    34   lcase      :: "[i,i,[i,i]\<Rightarrow>i]\<Rightarrow>i"
    35   lrec       :: "[i,i,[i,i,i]=>i]=>i"
    35   lrec       :: "[i,i,[i,i,i]\<Rightarrow>i]\<Rightarrow>i"
    36 
    36 
    37   "let"      :: "[i,i=>i]=>i"
    37   "let"      :: "[i,i\<Rightarrow>i]\<Rightarrow>i"
    38   letrec     :: "[[i,i=>i]=>i,(i=>i)=>i]=>i"
    38   letrec     :: "[[i,i\<Rightarrow>i]\<Rightarrow>i,(i\<Rightarrow>i)\<Rightarrow>i]\<Rightarrow>i"
    39   letrec2    :: "[[i,i,i=>i=>i]=>i,(i=>i=>i)=>i]=>i"
    39   letrec2    :: "[[i,i,i\<Rightarrow>i\<Rightarrow>i]\<Rightarrow>i,(i\<Rightarrow>i\<Rightarrow>i)\<Rightarrow>i]\<Rightarrow>i"
    40   letrec3    :: "[[i,i,i,i=>i=>i=>i]=>i,(i=>i=>i=>i)=>i]=>i"
    40   letrec3    :: "[[i,i,i,i\<Rightarrow>i\<Rightarrow>i\<Rightarrow>i]\<Rightarrow>i,(i\<Rightarrow>i\<Rightarrow>i\<Rightarrow>i)\<Rightarrow>i]\<Rightarrow>i"
    41 
    41 
    42 syntax
    42 syntax
    43   "_let"     :: "[id,i,i]=>i"             ("(3let _ be _/ in _)"
    43   "_let"     :: "[id,i,i]\<Rightarrow>i"             ("(3let _ be _/ in _)"
    44                         [0,0,60] 60)
    44                         [0,0,60] 60)
    45 
    45 
    46   "_letrec"  :: "[id,id,i,i]=>i"         ("(3letrec _ _ be _/ in _)"
    46   "_letrec"  :: "[id,id,i,i]\<Rightarrow>i"         ("(3letrec _ _ be _/ in _)"
    47                         [0,0,0,60] 60)
    47                         [0,0,0,60] 60)
    48 
    48 
    49   "_letrec2" :: "[id,id,id,i,i]=>i"     ("(3letrec _ _ _ be _/ in _)"
    49   "_letrec2" :: "[id,id,id,i,i]\<Rightarrow>i"     ("(3letrec _ _ _ be _/ in _)"
    50                         [0,0,0,0,60] 60)
    50                         [0,0,0,0,60] 60)
    51 
    51 
    52   "_letrec3" :: "[id,id,id,id,i,i]=>i" ("(3letrec _ _ _ _ be _/ in _)"
    52   "_letrec3" :: "[id,id,id,id,i,i]\<Rightarrow>i" ("(3letrec _ _ _ _ be _/ in _)"
    53                         [0,0,0,0,0,60] 60)
    53                         [0,0,0,0,0,60] 60)
    54 
    54 
    55 ML {*
    55 ML {*
    56 (** Quantifier translations: variable binding **)
    56 (** Quantifier translations: variable binding **)
    57 
    57 
   106   (@{const_syntax letrec2}, K letrec2_tr'),
   106   (@{const_syntax letrec2}, K letrec2_tr'),
   107   (@{const_syntax letrec3}, K letrec3_tr')]
   107   (@{const_syntax letrec3}, K letrec3_tr')]
   108 *}
   108 *}
   109 
   109 
   110 consts
   110 consts
   111   napply     :: "[i=>i,i,i]=>i"            ("(_ ^ _ ` _)" [56,56,56] 56)
   111   napply     :: "[i\<Rightarrow>i,i,i]\<Rightarrow>i"            ("(_ ^ _ ` _)" [56,56,56] 56)
   112 
   112 
   113 defs
   113 defs
   114   one_def:                    "one == true"
   114   one_def:                    "one == true"
   115   if_def:     "if b then t else u  == case(b,t,u,% x y. bot,%v. bot)"
   115   if_def:     "if b then t else u  == case(b, t, u, \<lambda> x y. bot, \<lambda>v. bot)"
   116   inl_def:                 "inl(a) == <true,a>"
   116   inl_def:                 "inl(a) == <true,a>"
   117   inr_def:                 "inr(b) == <false,b>"
   117   inr_def:                 "inr(b) == <false,b>"
   118   when_def:           "when(t,f,g) == split(t,%b x. if b then f(x) else g(x))"
   118   when_def:           "when(t,f,g) == split(t, \<lambda>b x. if b then f(x) else g(x))"
   119   split_def:           "split(t,f) == case(t,bot,bot,f,%u. bot)"
   119   split_def:           "split(t,f) == case(t, bot, bot, f, \<lambda>u. bot)"
   120   fst_def:                 "fst(t) == split(t,%x y. x)"
   120   fst_def:                 "fst(t) == split(t, \<lambda>x y. x)"
   121   snd_def:                 "snd(t) == split(t,%x y. y)"
   121   snd_def:                 "snd(t) == split(t, \<lambda>x y. y)"
   122   thd_def:                 "thd(t) == split(t,%x p. split(p,%y z. z))"
   122   thd_def:                 "thd(t) == split(t, \<lambda>x p. split(p, \<lambda>y z. z))"
   123   zero_def:                  "zero == inl(one)"
   123   zero_def:                  "zero == inl(one)"
   124   succ_def:               "succ(n) == inr(n)"
   124   succ_def:               "succ(n) == inr(n)"
   125   ncase_def:         "ncase(n,b,c) == when(n,%x. b,%y. c(y))"
   125   ncase_def:         "ncase(n,b,c) == when(n, \<lambda>x. b, \<lambda>y. c(y))"
   126   nrec_def:          " nrec(n,b,c) == letrec g x be ncase(x,b,%y. c(y,g(y))) in g(n)"
   126   nrec_def:          " nrec(n,b,c) == letrec g x be ncase(x, b, \<lambda>y. c(y,g(y))) in g(n)"
   127   nil_def:                     "[] == inl(one)"
   127   nil_def:                     "[] == inl(one)"
   128   cons_def:                   "h$t == inr(<h,t>)"
   128   cons_def:                   "h$t == inr(<h,t>)"
   129   lcase_def:         "lcase(l,b,c) == when(l,%x. b,%y. split(y,c))"
   129   lcase_def:         "lcase(l,b,c) == when(l, \<lambda>x. b, \<lambda>y. split(y,c))"
   130   lrec_def:           "lrec(l,b,c) == letrec g x be lcase(x,b,%h t. c(h,t,g(t))) in g(l)"
   130   lrec_def:           "lrec(l,b,c) == letrec g x be lcase(x, b, \<lambda>h t. c(h,t,g(t))) in g(l)"
   131 
   131 
   132   let_def:  "let x be t in f(x) == case(t,f(true),f(false),%x y. f(<x,y>),%u. f(lam x. u(x)))"
   132   let_def:  "let x be t in f(x) == case(t,f(true),f(false), \<lambda>x y. f(<x,y>), \<lambda>u. f(lam x. u(x)))"
   133   letrec_def:
   133   letrec_def:
   134   "letrec g x be h(x,g) in b(g) == b(%x. fix(%f. lam x. h(x,%y. f`y))`x)"
   134   "letrec g x be h(x,g) in b(g) == b(\<lambda>x. fix(\<lambda>f. lam x. h(x,\<lambda>y. f`y))`x)"
   135 
   135 
   136   letrec2_def:  "letrec g x y be h(x,y,g) in f(g)==
   136   letrec2_def:  "letrec g x y be h(x,y,g) in f(g)==
   137                letrec g' p be split(p,%x y. h(x,y,%u v. g'(<u,v>)))
   137                letrec g' p be split(p,\<lambda>x y. h(x,y,\<lambda>u v. g'(<u,v>)))
   138                           in f(%x y. g'(<x,y>))"
   138                           in f(\<lambda>x y. g'(<x,y>))"
   139 
   139 
   140   letrec3_def:  "letrec g x y z be h(x,y,z,g) in f(g) ==
   140   letrec3_def:  "letrec g x y z be h(x,y,z,g) in f(g) ==
   141              letrec g' p be split(p,%x xs. split(xs,%y z. h(x,y,z,%u v w. g'(<u,<v,w>>))))
   141              letrec g' p be split(p,\<lambda>x xs. split(xs,\<lambda>y z. h(x,y,z,\<lambda>u v w. g'(<u,<v,w>>))))
   142                           in f(%x y z. g'(<x,<y,z>>))"
   142                           in f(\<lambda>x y z. g'(<x,<y,z>>))"
   143 
   143 
   144   napply_def: "f ^n` a == nrec(n,a,%x g. f(g))"
   144   napply_def: "f ^n` a == nrec(n,a,\<lambda>x g. f(g))"
   145 
   145 
   146 
   146 
   147 lemmas simp_can_defs = one_def inl_def inr_def
   147 lemmas simp_can_defs = one_def inl_def inr_def
   148   and simp_ncan_defs = if_def when_def split_def fst_def snd_def thd_def
   148   and simp_ncan_defs = if_def when_def split_def fst_def snd_def thd_def
   149 lemmas simp_defs = simp_can_defs simp_ncan_defs
   149 lemmas simp_defs = simp_can_defs simp_ncan_defs
   156   and genrec_defs = letrec_def letrec2_def letrec3_def
   156   and genrec_defs = letrec_def letrec2_def letrec3_def
   157 
   157 
   158 
   158 
   159 subsection {* Beta Rules, including strictness *}
   159 subsection {* Beta Rules, including strictness *}
   160 
   160 
   161 lemma letB: "~ t=bot ==> let x be t in f(x) = f(t)"
   161 lemma letB: "\<not> t=bot \<Longrightarrow> let x be t in f(x) = f(t)"
   162   apply (unfold let_def)
   162   apply (unfold let_def)
   163   apply (erule rev_mp)
   163   apply (erule rev_mp)
   164   apply (rule_tac t = "t" in term_case)
   164   apply (rule_tac t = "t" in term_case)
   165       apply (simp_all add: caseBtrue caseBfalse caseBpair caseBlam)
   165       apply (simp_all add: caseBtrue caseBfalse caseBpair caseBlam)
   166   done
   166   done
   191   apply (unfold fix_def)
   191   apply (unfold fix_def)
   192   apply (rule applyB [THEN ssubst], rule refl)
   192   apply (rule applyB [THEN ssubst], rule refl)
   193   done
   193   done
   194 
   194 
   195 lemma letrecB:
   195 lemma letrecB:
   196     "letrec g x be h(x,g) in g(a) = h(a,%y. letrec g x be h(x,g) in g(y))"
   196     "letrec g x be h(x,g) in g(a) = h(a,\<lambda>y. letrec g x be h(x,g) in g(y))"
   197   apply (unfold letrec_def)
   197   apply (unfold letrec_def)
   198   apply (rule fixB [THEN ssubst], rule applyB [THEN ssubst], rule refl)
   198   apply (rule fixB [THEN ssubst], rule applyB [THEN ssubst], rule refl)
   199   done
   199   done
   200 
   200 
   201 lemmas rawBs = caseBs applyB applyBbot
   201 lemmas rawBs = caseBs applyB applyBbot
   251   and lrecBcons: "lrec(x$xs,t,u) = u(x,xs,lrec(xs,t,u))"
   251   and lrecBcons: "lrec(x$xs,t,u) = u(x,xs,lrec(xs,t,u))"
   252   and lrecBbot: "lrec(bot,t,u) = bot"
   252   and lrecBbot: "lrec(bot,t,u) = bot"
   253   unfolding data_defs by beta_rl+
   253   unfolding data_defs by beta_rl+
   254 
   254 
   255 lemma letrec2B:
   255 lemma letrec2B:
   256   "letrec g x y be h(x,y,g) in g(p,q) = h(p,q,%u v. letrec g x y be h(x,y,g) in g(u,v))"
   256   "letrec g x y be h(x,y,g) in g(p,q) = h(p,q,\<lambda>u v. letrec g x y be h(x,y,g) in g(u,v))"
   257   unfolding data_defs letrec2_def by beta_rl+
   257   unfolding data_defs letrec2_def by beta_rl+
   258 
   258 
   259 lemma letrec3B:
   259 lemma letrec3B:
   260   "letrec g x y z be h(x,y,z,g) in g(p,q,r) =
   260   "letrec g x y z be h(x,y,z,g) in g(p,q,r) =
   261     h(p,q,r,%u v w. letrec g x y z be h(x,y,z,g) in g(u,v,w))"
   261     h(p,q,r,\<lambda>u v w. letrec g x y z be h(x,y,z,g) in g(u,v,w))"
   262   unfolding data_defs letrec3_def by beta_rl+
   262   unfolding data_defs letrec3_def by beta_rl+
   263 
   263 
   264 lemma napplyBzero: "f^zero`a = a"
   264 lemma napplyBzero: "f^zero`a = a"
   265   and napplyBsucc: "f^succ(n)`a = f(f^n`a)"
   265   and napplyBsucc: "f^succ(n)`a = f(f^n`a)"
   266   unfolding data_defs by beta_rl+
   266   unfolding data_defs by beta_rl+
   273 
   273 
   274 
   274 
   275 subsection {* Constructors are injective *}
   275 subsection {* Constructors are injective *}
   276 
   276 
   277 lemma term_injs:
   277 lemma term_injs:
   278   "(inl(a) = inl(a')) <-> (a=a')"
   278   "(inl(a) = inl(a')) \<longleftrightarrow> (a=a')"
   279   "(inr(a) = inr(a')) <-> (a=a')"
   279   "(inr(a) = inr(a')) \<longleftrightarrow> (a=a')"
   280   "(succ(a) = succ(a')) <-> (a=a')"
   280   "(succ(a) = succ(a')) \<longleftrightarrow> (a=a')"
   281   "(a$b = a'$b') <-> (a=a' & b=b')"
   281   "(a$b = a'$b') \<longleftrightarrow> (a=a' \<and> b=b')"
   282   by (inj_rl applyB splitB whenBinl whenBinr ncaseBsucc lcaseBcons)
   282   by (inj_rl applyB splitB whenBinl whenBinr ncaseBsucc lcaseBcons)
   283 
   283 
   284 
   284 
   285 subsection {* Constructors are distinct *}
   285 subsection {* Constructors are distinct *}
   286 
   286 
   292 
   292 
   293 
   293 
   294 subsection {* Rules for pre-order @{text "[="} *}
   294 subsection {* Rules for pre-order @{text "[="} *}
   295 
   295 
   296 lemma term_porews:
   296 lemma term_porews:
   297   "inl(a) [= inl(a') <-> a [= a'"
   297   "inl(a) [= inl(a') \<longleftrightarrow> a [= a'"
   298   "inr(b) [= inr(b') <-> b [= b'"
   298   "inr(b) [= inr(b') \<longleftrightarrow> b [= b'"
   299   "succ(n) [= succ(n') <-> n [= n'"
   299   "succ(n) [= succ(n') \<longleftrightarrow> n [= n'"
   300   "x$xs [= x'$xs' <-> x [= x'  & xs [= xs'"
   300   "x$xs [= x'$xs' \<longleftrightarrow> x [= x' \<and> xs [= xs'"
   301   by (simp_all add: data_defs ccl_porews)
   301   by (simp_all add: data_defs ccl_porews)
   302 
   302 
   303 
   303 
   304 subsection {* Rewriting and Proving *}
   304 subsection {* Rewriting and Proving *}
   305 
   305