|
1 (* Title: HOL/Examples/Adhoc_Overloading.thy |
|
2 Author: Christian Sternagel |
|
3 *) |
|
4 |
|
5 section \<open>Ad Hoc Overloading\<close> |
|
6 |
|
7 theory Adhoc_Overloading |
|
8 imports |
|
9 Main |
|
10 "HOL-Library.Infinite_Set" |
|
11 begin |
|
12 |
|
13 text \<open>Adhoc overloading allows to overload a constant depending on |
|
14 its type. Typically this involves to introduce an uninterpreted |
|
15 constant (used for input and output) and then add some variants (used |
|
16 internally).\<close> |
|
17 |
|
18 subsection \<open>Plain Ad Hoc Overloading\<close> |
|
19 |
|
20 text \<open>Consider the type of first-order terms.\<close> |
|
21 datatype ('a, 'b) "term" = |
|
22 Var 'b | |
|
23 Fun 'a "('a, 'b) term list" |
|
24 |
|
25 text \<open>The set of variables of a term might be computed as follows.\<close> |
|
26 fun term_vars :: "('a, 'b) term \<Rightarrow> 'b set" where |
|
27 "term_vars (Var x) = {x}" | |
|
28 "term_vars (Fun f ts) = \<Union>(set (map term_vars ts))" |
|
29 |
|
30 text \<open>However, also for \emph{rules} (i.e., pairs of terms) and term |
|
31 rewrite systems (i.e., sets of rules), the set of variables makes |
|
32 sense. Thus we introduce an unspecified constant \<open>vars\<close>.\<close> |
|
33 |
|
34 consts vars :: "'a \<Rightarrow> 'b set" |
|
35 |
|
36 text \<open>Which is then overloaded with variants for terms, rules, and TRSs.\<close> |
|
37 adhoc_overloading |
|
38 vars term_vars |
|
39 |
|
40 value [nbe] "vars (Fun ''f'' [Var 0, Var 1])" |
|
41 |
|
42 fun rule_vars :: "('a, 'b) term \<times> ('a, 'b) term \<Rightarrow> 'b set" where |
|
43 "rule_vars (l, r) = vars l \<union> vars r" |
|
44 |
|
45 adhoc_overloading |
|
46 vars rule_vars |
|
47 |
|
48 value [nbe] "vars (Var 1, Var 0)" |
|
49 |
|
50 definition trs_vars :: "(('a, 'b) term \<times> ('a, 'b) term) set \<Rightarrow> 'b set" where |
|
51 "trs_vars R = \<Union>(rule_vars ` R)" |
|
52 |
|
53 adhoc_overloading |
|
54 vars trs_vars |
|
55 |
|
56 value [nbe] "vars {(Var 1, Var 0)}" |
|
57 |
|
58 text \<open>Sometimes it is necessary to add explicit type constraints |
|
59 before a variant can be determined.\<close> |
|
60 (*value "vars R" (*has multiple instances*)*) |
|
61 value "vars (R :: (('a, 'b) term \<times> ('a, 'b) term) set)" |
|
62 |
|
63 text \<open>It is also possible to remove variants.\<close> |
|
64 no_adhoc_overloading |
|
65 vars term_vars rule_vars |
|
66 |
|
67 (*value "vars (Var 1)" (*does not have an instance*)*) |
|
68 |
|
69 text \<open>As stated earlier, the overloaded constant is only used for |
|
70 input and output. Internally, always a variant is used, as can be |
|
71 observed by the configuration option \<open>show_variants\<close>.\<close> |
|
72 |
|
73 adhoc_overloading |
|
74 vars term_vars |
|
75 |
|
76 declare [[show_variants]] |
|
77 |
|
78 term "vars (Var 1)" (*which yields: "term_vars (Var 1)"*) |
|
79 |
|
80 |
|
81 subsection \<open>Adhoc Overloading inside Locales\<close> |
|
82 |
|
83 text \<open>As example we use permutations that are parametrized over an |
|
84 atom type \<^typ>\<open>'a\<close>.\<close> |
|
85 |
|
86 definition perms :: "('a \<Rightarrow> 'a) set" where |
|
87 "perms = {f. bij f \<and> finite {x. f x \<noteq> x}}" |
|
88 |
|
89 typedef 'a perm = "perms :: ('a \<Rightarrow> 'a) set" |
|
90 by standard (auto simp: perms_def) |
|
91 |
|
92 text \<open>First we need some auxiliary lemmas.\<close> |
|
93 lemma permsI [Pure.intro]: |
|
94 assumes "bij f" and "MOST x. f x = x" |
|
95 shows "f \<in> perms" |
|
96 using assms by (auto simp: perms_def) (metis MOST_iff_finiteNeg) |
|
97 |
|
98 lemma perms_imp_bij: |
|
99 "f \<in> perms \<Longrightarrow> bij f" |
|
100 by (simp add: perms_def) |
|
101 |
|
102 lemma perms_imp_MOST_eq: |
|
103 "f \<in> perms \<Longrightarrow> MOST x. f x = x" |
|
104 by (simp add: perms_def) (metis MOST_iff_finiteNeg) |
|
105 |
|
106 lemma id_perms [simp]: |
|
107 "id \<in> perms" |
|
108 "(\<lambda>x. x) \<in> perms" |
|
109 by (auto simp: perms_def bij_def) |
|
110 |
|
111 lemma perms_comp [simp]: |
|
112 assumes f: "f \<in> perms" and g: "g \<in> perms" |
|
113 shows "(f \<circ> g) \<in> perms" |
|
114 apply (intro permsI bij_comp) |
|
115 apply (rule perms_imp_bij [OF g]) |
|
116 apply (rule perms_imp_bij [OF f]) |
|
117 apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF g]]) |
|
118 apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF f]]) |
|
119 by simp |
|
120 |
|
121 lemma perms_inv: |
|
122 assumes f: "f \<in> perms" |
|
123 shows "inv f \<in> perms" |
|
124 apply (rule permsI) |
|
125 apply (rule bij_imp_bij_inv) |
|
126 apply (rule perms_imp_bij [OF f]) |
|
127 apply (rule MOST_mono [OF perms_imp_MOST_eq [OF f]]) |
|
128 apply (erule subst, rule inv_f_f) |
|
129 apply (rule bij_is_inj [OF perms_imp_bij [OF f]]) |
|
130 done |
|
131 |
|
132 lemma bij_Rep_perm: "bij (Rep_perm p)" |
|
133 using Rep_perm [of p] unfolding perms_def by simp |
|
134 |
|
135 instantiation perm :: (type) group_add |
|
136 begin |
|
137 |
|
138 definition "0 = Abs_perm id" |
|
139 definition "- p = Abs_perm (inv (Rep_perm p))" |
|
140 definition "p + q = Abs_perm (Rep_perm p \<circ> Rep_perm q)" |
|
141 definition "(p1::'a perm) - p2 = p1 + - p2" |
|
142 |
|
143 lemma Rep_perm_0: "Rep_perm 0 = id" |
|
144 unfolding zero_perm_def by (simp add: Abs_perm_inverse) |
|
145 |
|
146 lemma Rep_perm_add: |
|
147 "Rep_perm (p1 + p2) = Rep_perm p1 \<circ> Rep_perm p2" |
|
148 unfolding plus_perm_def by (simp add: Abs_perm_inverse Rep_perm) |
|
149 |
|
150 lemma Rep_perm_uminus: |
|
151 "Rep_perm (- p) = inv (Rep_perm p)" |
|
152 unfolding uminus_perm_def by (simp add: Abs_perm_inverse perms_inv Rep_perm) |
|
153 |
|
154 instance |
|
155 apply standard |
|
156 unfolding Rep_perm_inject [symmetric] |
|
157 unfolding minus_perm_def |
|
158 unfolding Rep_perm_add |
|
159 unfolding Rep_perm_uminus |
|
160 unfolding Rep_perm_0 |
|
161 apply (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]]) |
|
162 done |
|
163 |
|
164 end |
|
165 |
|
166 lemmas Rep_perm_simps = |
|
167 Rep_perm_0 |
|
168 Rep_perm_add |
|
169 Rep_perm_uminus |
|
170 |
|
171 |
|
172 section \<open>Permutation Types\<close> |
|
173 |
|
174 text \<open>We want to be able to apply permutations to arbitrary types. To |
|
175 this end we introduce a constant \<open>PERMUTE\<close> together with |
|
176 convenient infix syntax.\<close> |
|
177 |
|
178 consts PERMUTE :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" (infixr \<open>\<bullet>\<close> 75) |
|
179 |
|
180 text \<open>Then we add a locale for types \<^typ>\<open>'b\<close> that support |
|
181 appliciation of permutations.\<close> |
|
182 locale permute = |
|
183 fixes permute :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" |
|
184 assumes permute_zero [simp]: "permute 0 x = x" |
|
185 and permute_plus [simp]: "permute (p + q) x = permute p (permute q x)" |
|
186 begin |
|
187 |
|
188 adhoc_overloading |
|
189 PERMUTE permute |
|
190 |
|
191 end |
|
192 |
|
193 text \<open>Permuting atoms.\<close> |
|
194 definition permute_atom :: "'a perm \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
195 "permute_atom p a = (Rep_perm p) a" |
|
196 |
|
197 adhoc_overloading |
|
198 PERMUTE permute_atom |
|
199 |
|
200 interpretation atom_permute: permute permute_atom |
|
201 by standard (simp_all add: permute_atom_def Rep_perm_simps) |
|
202 |
|
203 text \<open>Permuting permutations.\<close> |
|
204 definition permute_perm :: "'a perm \<Rightarrow> 'a perm \<Rightarrow> 'a perm" where |
|
205 "permute_perm p q = p + q - p" |
|
206 |
|
207 adhoc_overloading |
|
208 PERMUTE permute_perm |
|
209 |
|
210 interpretation perm_permute: permute permute_perm |
|
211 apply standard |
|
212 unfolding permute_perm_def |
|
213 apply simp |
|
214 apply (simp only: diff_conv_add_uminus minus_add add.assoc) |
|
215 done |
|
216 |
|
217 text \<open>Permuting functions.\<close> |
|
218 locale fun_permute = |
|
219 dom: permute perm1 + ran: permute perm2 |
|
220 for perm1 :: "'a perm \<Rightarrow> 'b \<Rightarrow> 'b" |
|
221 and perm2 :: "'a perm \<Rightarrow> 'c \<Rightarrow> 'c" |
|
222 begin |
|
223 |
|
224 adhoc_overloading |
|
225 PERMUTE perm1 perm2 |
|
226 |
|
227 definition permute_fun :: "'a perm \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c)" where |
|
228 "permute_fun p f = (\<lambda>x. p \<bullet> (f (-p \<bullet> x)))" |
|
229 |
|
230 adhoc_overloading |
|
231 PERMUTE permute_fun |
|
232 |
|
233 end |
|
234 |
|
235 sublocale fun_permute \<subseteq> permute permute_fun |
|
236 by (unfold_locales, auto simp: permute_fun_def) |
|
237 (metis dom.permute_plus minus_add) |
|
238 |
|
239 lemma "(Abs_perm id :: nat perm) \<bullet> Suc 0 = Suc 0" |
|
240 unfolding permute_atom_def |
|
241 by (metis Rep_perm_0 id_apply zero_perm_def) |
|
242 |
|
243 interpretation atom_fun_permute: fun_permute permute_atom permute_atom |
|
244 by (unfold_locales) |
|
245 |
|
246 adhoc_overloading |
|
247 PERMUTE atom_fun_permute.permute_fun |
|
248 |
|
249 lemma "(Abs_perm id :: 'a perm) \<bullet> id = id" |
|
250 unfolding atom_fun_permute.permute_fun_def |
|
251 unfolding permute_atom_def |
|
252 by (metis Rep_perm_0 id_def inj_imp_inv_eq inj_on_id uminus_perm_def zero_perm_def) |
|
253 |
|
254 end |