src/HOL/Wellfounded_Recursion.thy
changeset 26235 96b804999ca7
parent 26175 11e338832c31
equal deleted inserted replaced
26234:1f6e28a88785 26235:96b804999ca7
   528 definition
   528 definition
   529   pred_nat :: "(nat * nat) set" where
   529   pred_nat :: "(nat * nat) set" where
   530   "pred_nat = {(m, n). n = Suc m}"
   530   "pred_nat = {(m, n). n = Suc m}"
   531 
   531 
   532 definition
   532 definition
   533   less_than :: "(nat * nat)set" where
   533   less_than :: "(nat * nat) set" where
   534   "less_than = pred_nat^+"
   534   "less_than = pred_nat^+"
   535 
   535 
   536 lemma less_eq: "(m, n) \<in> pred_nat^+ \<longleftrightarrow> m < n"
   536 lemma less_eq: "(m, n) \<in> pred_nat^+ \<longleftrightarrow> m < n"
   537   unfolding less_nat_rel pred_nat_def trancl_def by simp
   537   unfolding less_nat_rel pred_nat_def trancl_def by simp
   538 
   538