src/HOL/Transitive_Closure.thy
changeset 22262 96ba62dff413
parent 22172 e7d6cb237b5e
child 22422 ee19cdb07528
equal deleted inserted replaced
22261:9e185f78e7d4 22262:96ba62dff413
     5 *)
     5 *)
     6 
     6 
     7 header {* Reflexive and Transitive closure of a relation *}
     7 header {* Reflexive and Transitive closure of a relation *}
     8 
     8 
     9 theory Transitive_Closure
     9 theory Transitive_Closure
    10 imports Inductive
    10 imports Predicate
    11 uses "~~/src/Provers/trancl.ML"
    11 uses "~~/src/Provers/trancl.ML"
    12 begin
    12 begin
    13 
    13 
    14 text {*
    14 text {*
    15   @{text rtrancl} is reflexive/transitive closure,
    15   @{text rtrancl} is reflexive/transitive closure,
    18 
    18 
    19   These postfix operators have \emph{maximum priority}, forcing their
    19   These postfix operators have \emph{maximum priority}, forcing their
    20   operands to be atomic.
    20   operands to be atomic.
    21 *}
    21 *}
    22 
    22 
    23 consts
    23 inductive2
    24   rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
    24   rtrancl :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"   ("(_^**)" [1000] 1000)
    25 
    25   for r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
    26 inductive "r^*"
    26 where
    27   intros
    27     rtrancl_refl [intro!, Pure.intro!, simp]: "r^** a a"
    28     rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*"
    28   | rtrancl_into_rtrancl [Pure.intro]: "r^** a b ==> r b c ==> r^** a c"
    29     rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
    29 
    30 
    30 inductive2
    31 consts
    31   trancl :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(_^++)" [1000] 1000)
    32   trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
    32   for r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
    33 
    33 where
    34 inductive "r^+"
    34     r_into_trancl [intro, Pure.intro]: "r a b ==> r^++ a b"
    35   intros
    35   | trancl_into_trancl [Pure.intro]: "r^++ a b ==> r b c ==> r^++ a c"
    36     r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+"
    36 
    37     trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
    37 constdefs
       
    38   rtrancl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
       
    39   "r^* == Collect2 (member2 r)^**"
       
    40 
       
    41   trancl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
       
    42   "r^+ == Collect2 (member2 r)^++"
    38 
    43 
    39 abbreviation
    44 abbreviation
    40   reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
    45   reflcl :: "('a => 'a => bool) => 'a => 'a => bool"  ("(_^==)" [1000] 1000) where
       
    46   "r^== == join r op ="
       
    47 
       
    48 abbreviation
       
    49   reflcl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
    41   "r^= == r \<union> Id"
    50   "r^= == r \<union> Id"
    42 
    51 
    43 notation (xsymbols)
    52 notation (xsymbols)
    44   rtrancl  ("(_\<^sup>*)" [1000] 999) and
    53   rtrancl  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
    45   trancl  ("(_\<^sup>+)" [1000] 999) and
    54   trancl  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
    46   reflcl  ("(_\<^sup>=)" [1000] 999)
    55   reflcl  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
       
    56   rtrancl_set  ("(_\<^sup>*)" [1000] 999) and
       
    57   trancl_set  ("(_\<^sup>+)" [1000] 999) and
       
    58   reflcl_set  ("(_\<^sup>=)" [1000] 999)
    47 
    59 
    48 notation (HTML output)
    60 notation (HTML output)
    49   rtrancl  ("(_\<^sup>*)" [1000] 999) and
    61   rtrancl  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
    50   trancl  ("(_\<^sup>+)" [1000] 999) and
    62   trancl  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
    51   reflcl  ("(_\<^sup>=)" [1000] 999)
    63   reflcl  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
       
    64   rtrancl_set  ("(_\<^sup>*)" [1000] 999) and
       
    65   trancl_set  ("(_\<^sup>+)" [1000] 999) and
       
    66   reflcl_set  ("(_\<^sup>=)" [1000] 999)
    52 
    67 
    53 
    68 
    54 subsection {* Reflexive-transitive closure *}
    69 subsection {* Reflexive-transitive closure *}
       
    70 
       
    71 lemma rtrancl_set_eq [pred_set_conv]: "(member2 r)^** = member2 (r^*)"
       
    72   by (simp add: rtrancl_set_def)
       
    73 
       
    74 lemma reflcl_set_eq [pred_set_conv]: "(join (member2 r) op =) = member2 (r Un Id)"
       
    75   by (simp add: expand_fun_eq)
       
    76 
       
    77 lemmas rtrancl_refl [intro!, Pure.intro!, simp] = rtrancl_refl [to_set]
       
    78 lemmas rtrancl_into_rtrancl [Pure.intro] = rtrancl_into_rtrancl [to_set]
    55 
    79 
    56 lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
    80 lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
    57   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
    81   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
    58   apply (simp only: split_tupled_all)
    82   apply (simp only: split_tupled_all)
    59   apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
    83   apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
    60   done
    84   done
    61 
    85 
    62 lemma rtrancl_mono: "r \<subseteq> s ==> r^* \<subseteq> s^*"
    86 lemma r_into_rtrancl' [intro]: "r x y ==> r^** x y"
       
    87   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
       
    88   by (erule rtrancl.rtrancl_refl [THEN rtrancl.rtrancl_into_rtrancl])
       
    89 
       
    90 lemma rtrancl_mono': "r \<le> s ==> r^** \<le> s^**"
    63   -- {* monotonicity of @{text rtrancl} *}
    91   -- {* monotonicity of @{text rtrancl} *}
    64   apply (rule subsetI)
    92   apply (rule predicate2I)
    65   apply (simp only: split_tupled_all)
       
    66   apply (erule rtrancl.induct)
    93   apply (erule rtrancl.induct)
    67    apply (rule_tac [2] rtrancl_into_rtrancl, blast+)
    94    apply (rule_tac [2] rtrancl.rtrancl_into_rtrancl, blast+)
    68   done
    95   done
    69 
    96 
    70 theorem rtrancl_induct [consumes 1, induct set: rtrancl]:
    97 lemmas rtrancl_mono = rtrancl_mono' [to_set]
    71   assumes a: "(a, b) : r^*"
    98 
    72     and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z"
    99 theorem rtrancl_induct' [consumes 1, induct set: rtrancl]:
       
   100   assumes a: "r^** a b"
       
   101     and cases: "P a" "!!y z. [| r^** a y; r y z; P y |] ==> P z"
    73   shows "P b"
   102   shows "P b"
    74 proof -
   103 proof -
    75   from a have "a = a --> P b"
   104   from a have "a = a --> P b"
    76     by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
   105     by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
    77   thus ?thesis by iprover
   106   thus ?thesis by iprover
    78 qed
   107 qed
       
   108 
       
   109 lemmas rtrancl_induct [consumes 1, induct set: rtrancl_set] = rtrancl_induct' [to_set]
       
   110 
       
   111 lemmas rtrancl_induct2' =
       
   112   rtrancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,
       
   113                  consumes 1, case_names refl step]
    79 
   114 
    80 lemmas rtrancl_induct2 =
   115 lemmas rtrancl_induct2 =
    81   rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
   116   rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
    82                  consumes 1, case_names refl step]
   117                  consumes 1, case_names refl step]
    83 
   118 
    92   assume "(y, z) \<in> r\<^sup>*"
   127   assume "(y, z) \<in> r\<^sup>*"
    93   thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+
   128   thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+
    94 qed
   129 qed
    95 
   130 
    96 lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
   131 lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
       
   132 
       
   133 lemma rtrancl_trans':
       
   134   assumes xy: "r^** x y"
       
   135   and yz: "r^** y z"
       
   136   shows "r^** x z" using yz xy
       
   137   by induct iprover+
    97 
   138 
    98 lemma rtranclE:
   139 lemma rtranclE:
    99   assumes major: "(a::'a,b) : r^*"
   140   assumes major: "(a::'a,b) : r^*"
   100     and cases: "(a = b) ==> P"
   141     and cases: "(a = b) ==> P"
   101       "!!y. [| (a,y) : r^*; (y,b) : r |] ==> P"
   142       "!!y. [| (a,y) : r^*; (y,b) : r |] ==> P"
   112   apply (rule subsetI)
   153   apply (rule subsetI)
   113   apply (rule_tac p="x" in PairE, clarify)
   154   apply (rule_tac p="x" in PairE, clarify)
   114   apply (erule rtrancl_induct, auto) 
   155   apply (erule rtrancl_induct, auto) 
   115   done
   156   done
   116 
   157 
   117 lemma converse_rtrancl_into_rtrancl:
   158 lemma converse_rtrancl_into_rtrancl':
   118   "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>*"
   159   "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c"
   119   by (rule rtrancl_trans) iprover+
   160   by (rule rtrancl_trans') iprover+
       
   161 
       
   162 lemmas converse_rtrancl_into_rtrancl = converse_rtrancl_into_rtrancl' [to_set]
   120 
   163 
   121 text {*
   164 text {*
   122   \medskip More @{term "r^*"} equations and inclusions.
   165   \medskip More @{term "r^*"} equations and inclusions.
   123 *}
   166 *}
   124 
   167 
   125 lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
   168 lemma rtrancl_idemp' [simp]: "(r^**)^** = r^**"
   126   apply auto
   169   apply (auto intro!: order_antisym)
   127   apply (erule rtrancl_induct)
   170   apply (erule rtrancl_induct')
   128    apply (rule rtrancl_refl)
   171    apply (rule rtrancl.rtrancl_refl)
   129   apply (blast intro: rtrancl_trans)
   172   apply (blast intro: rtrancl_trans')
   130   done
   173   done
       
   174 
       
   175 lemmas rtrancl_idemp [simp] = rtrancl_idemp' [to_set]
   131 
   176 
   132 lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
   177 lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
   133   apply (rule set_ext)
   178   apply (rule set_ext)
   134   apply (simp only: split_tupled_all)
   179   apply (simp only: split_tupled_all)
   135   apply (blast intro: rtrancl_trans)
   180   apply (blast intro: rtrancl_trans)
   136   done
   181   done
   137 
   182 
   138 lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
   183 lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
   139 by (drule rtrancl_mono, simp)
   184 by (drule rtrancl_mono, simp)
   140 
   185 
   141 lemma rtrancl_subset: "R \<subseteq> S ==> S \<subseteq> R^* ==> S^* = R^*"
   186 lemma rtrancl_subset': "R \<le> S ==> S \<le> R^** ==> S^** = R^**"
   142   apply (drule rtrancl_mono)
   187   apply (drule rtrancl_mono')
   143   apply (drule rtrancl_mono, simp)
   188   apply (drule rtrancl_mono', simp)
   144   done
   189   done
   145 
   190 
   146 lemma rtrancl_Un_rtrancl: "(R^* \<union> S^*)^* = (R \<union> S)^*"
   191 lemmas rtrancl_subset = rtrancl_subset' [to_set]
   147   by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD])
   192 
   148 
   193 lemma rtrancl_Un_rtrancl': "(join (R^**) (S^**))^** = (join R S)^**"
   149 lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*"
   194   by (blast intro!: rtrancl_subset' intro: rtrancl_mono' [THEN predicate2D])
   150   by (blast intro!: rtrancl_subset intro: r_into_rtrancl)
   195 
       
   196 lemmas rtrancl_Un_rtrancl = rtrancl_Un_rtrancl' [to_set]
       
   197 
       
   198 lemma rtrancl_reflcl' [simp]: "(R^==)^** = R^**"
       
   199   by (blast intro!: rtrancl_subset')
       
   200 
       
   201 lemmas rtrancl_reflcl [simp] = rtrancl_reflcl' [to_set]
   151 
   202 
   152 lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
   203 lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
   153   apply (rule sym)
   204   apply (rule sym)
   154   apply (rule rtrancl_subset, blast, clarify)
   205   apply (rule rtrancl_subset, blast, clarify)
   155   apply (rename_tac a b)
   206   apply (rename_tac a b)
   156   apply (case_tac "a = b", blast)
   207   apply (case_tac "a = b", blast)
   157   apply (blast intro!: r_into_rtrancl)
   208   apply (blast intro!: r_into_rtrancl)
   158   done
   209   done
   159 
   210 
   160 theorem rtrancl_converseD:
   211 lemma rtrancl_r_diff_Id': "(meet r op ~=)^** = r^**"
   161   assumes r: "(x, y) \<in> (r^-1)^*"
   212   apply (rule sym)
   162   shows "(y, x) \<in> r^*"
   213   apply (rule rtrancl_subset')
       
   214   apply blast+
       
   215   done
       
   216 
       
   217 theorem rtrancl_converseD':
       
   218   assumes r: "(r^--1)^** x y"
       
   219   shows "r^** y x"
   163 proof -
   220 proof -
   164   from r show ?thesis
   221   from r show ?thesis
   165     by induct (iprover intro: rtrancl_trans dest!: converseD)+
   222     by induct (iprover intro: rtrancl_trans' dest!: conversepD)+
   166 qed
   223 qed
   167 
   224 
   168 theorem rtrancl_converseI:
   225 lemmas rtrancl_converseD = rtrancl_converseD' [to_set]
   169   assumes r: "(y, x) \<in> r^*"
   226 
   170   shows "(x, y) \<in> (r^-1)^*"
   227 theorem rtrancl_converseI':
       
   228   assumes r: "r^** y x"
       
   229   shows "(r^--1)^** x y"
   171 proof -
   230 proof -
   172   from r show ?thesis
   231   from r show ?thesis
   173     by induct (iprover intro: rtrancl_trans converseI)+
   232     by induct (iprover intro: rtrancl_trans' conversepI)+
   174 qed
   233 qed
       
   234 
       
   235 lemmas rtrancl_converseI = rtrancl_converseI' [to_set]
   175 
   236 
   176 lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
   237 lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
   177   by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
   238   by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
   178 
   239 
   179 lemma sym_rtrancl: "sym r ==> sym (r^*)"
   240 lemma sym_rtrancl: "sym r ==> sym (r^*)"
   180   by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
   241   by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
   181 
   242 
   182 theorem converse_rtrancl_induct[consumes 1]:
   243 theorem converse_rtrancl_induct'[consumes 1]:
   183   assumes major: "(a, b) : r^*"
   244   assumes major: "r^** a b"
   184     and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y"
   245     and cases: "P b" "!!y z. [| r y z; r^** z b; P z |] ==> P y"
   185   shows "P a"
   246   shows "P a"
   186 proof -
   247 proof -
   187   from rtrancl_converseI [OF major]
   248   from rtrancl_converseI' [OF major]
   188   show ?thesis
   249   show ?thesis
   189     by induct (iprover intro: cases dest!: converseD rtrancl_converseD)+
   250     by induct (iprover intro: cases dest!: conversepD rtrancl_converseD')+
   190 qed
   251 qed
       
   252 
       
   253 lemmas converse_rtrancl_induct[consumes 1] = converse_rtrancl_induct' [to_set]
       
   254 
       
   255 lemmas converse_rtrancl_induct2' =
       
   256   converse_rtrancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,
       
   257                  consumes 1, case_names refl step]
   191 
   258 
   192 lemmas converse_rtrancl_induct2 =
   259 lemmas converse_rtrancl_induct2 =
   193   converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
   260   converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
   194                  consumes 1, case_names refl step]
   261                  consumes 1, case_names refl step]
   195 
   262 
   196 lemma converse_rtranclE:
   263 lemma converse_rtranclE':
   197   assumes major: "(x,z):r^*"
   264   assumes major: "r^** x z"
   198     and cases: "x=z ==> P"
   265     and cases: "x=z ==> P"
   199       "!!y. [| (x,y):r; (y,z):r^* |] ==> P"
   266       "!!y. [| r x y; r^** y z |] ==> P"
   200   shows P
   267   shows P
   201   apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)")
   268   apply (subgoal_tac "x = z | (EX y. r x y & r^** y z)")
   202    apply (rule_tac [2] major [THEN converse_rtrancl_induct])
   269    apply (rule_tac [2] major [THEN converse_rtrancl_induct'])
   203     prefer 2 apply iprover
   270     prefer 2 apply iprover
   204    prefer 2 apply iprover
   271    prefer 2 apply iprover
   205   apply (erule asm_rl exE disjE conjE cases)+
   272   apply (erule asm_rl exE disjE conjE cases)+
   206   done
   273   done
   207 
   274 
   208 ML_setup {*
   275 lemmas converse_rtranclE = converse_rtranclE' [to_set]
   209   bind_thm ("converse_rtranclE2", split_rule
   276 
   210     (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
   277 lemmas converse_rtranclE2' = converse_rtranclE' [of _ "(xa,xb)" "(za,zb)", split_rule]
   211 *}
   278 
       
   279 lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule]
   212 
   280 
   213 lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
   281 lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
   214   by (blast elim: rtranclE converse_rtranclE
   282   by (blast elim: rtranclE converse_rtranclE
   215     intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
   283     intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
   216 
   284 
   218   by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
   286   by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
   219 
   287 
   220 
   288 
   221 subsection {* Transitive closure *}
   289 subsection {* Transitive closure *}
   222 
   290 
       
   291 lemma trancl_set_eq [pred_set_conv]: "(member2 r)^++ = member2 (r^+)"
       
   292   by (simp add: trancl_set_def)
       
   293 
       
   294 lemmas r_into_trancl [intro, Pure.intro] = r_into_trancl [to_set]
       
   295 lemmas trancl_into_trancl [Pure.intro] = trancl_into_trancl [to_set]
       
   296 
   223 lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
   297 lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
   224   apply (simp only: split_tupled_all)
   298   apply (simp add: split_tupled_all trancl_set_def)
   225   apply (erule trancl.induct)
   299   apply (erule trancl.induct)
   226   apply (iprover dest: subsetD)+
   300   apply (iprover dest: subsetD)+
   227   done
   301   done
   228 
   302 
   229 lemma r_into_trancl': "!!p. p : r ==> p : r^+"
   303 lemma r_into_trancl': "!!p. p : r ==> p : r^+"
   231 
   305 
   232 text {*
   306 text {*
   233   \medskip Conversions between @{text trancl} and @{text rtrancl}.
   307   \medskip Conversions between @{text trancl} and @{text rtrancl}.
   234 *}
   308 *}
   235 
   309 
   236 lemma trancl_into_rtrancl: "(a, b) \<in> r^+ ==> (a, b) \<in> r^*"
   310 lemma trancl_into_rtrancl': "r^++ a b ==> r^** a b"
   237   by (erule trancl.induct) iprover+
   311   by (erule trancl.induct) iprover+
   238 
   312 
   239 lemma rtrancl_into_trancl1: assumes r: "(a, b) \<in> r^*"
   313 lemmas trancl_into_rtrancl = trancl_into_rtrancl' [to_set]
   240   shows "!!c. (b, c) \<in> r ==> (a, c) \<in> r^+" using r
   314 
       
   315 lemma rtrancl_into_trancl1': assumes r: "r^** a b"
       
   316   shows "!!c. r b c ==> r^++ a c" using r
   241   by induct iprover+
   317   by induct iprover+
   242 
   318 
   243 lemma rtrancl_into_trancl2: "[| (a,b) : r;  (b,c) : r^* |]   ==>  (a,c) : r^+"
   319 lemmas rtrancl_into_trancl1 = rtrancl_into_trancl1' [to_set]
       
   320 
       
   321 lemma rtrancl_into_trancl2': "[| r a b; r^** b c |] ==> r^++ a c"
   244   -- {* intro rule from @{text r} and @{text rtrancl} *}
   322   -- {* intro rule from @{text r} and @{text rtrancl} *}
   245   apply (erule rtranclE, iprover)
   323   apply (erule rtrancl.cases, iprover)
   246   apply (rule rtrancl_trans [THEN rtrancl_into_trancl1])
   324   apply (rule rtrancl_trans' [THEN rtrancl_into_trancl1'])
   247    apply (assumption | rule r_into_rtrancl)+
   325    apply (simp | rule r_into_rtrancl')+
   248   done
   326   done
   249 
   327 
   250 lemma trancl_induct [consumes 1, induct set: trancl]:
   328 lemmas rtrancl_into_trancl2 = rtrancl_into_trancl2' [to_set]
   251   assumes a: "(a,b) : r^+"
   329 
   252   and cases: "!!y. (a, y) : r ==> P y"
   330 lemma trancl_induct' [consumes 1, induct set: trancl]:
   253     "!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z"
   331   assumes a: "r^++ a b"
       
   332   and cases: "!!y. r a y ==> P y"
       
   333     "!!y z. r^++ a y ==> r y z ==> P y ==> P z"
   254   shows "P b"
   334   shows "P b"
   255   -- {* Nice induction rule for @{text trancl} *}
   335   -- {* Nice induction rule for @{text trancl} *}
   256 proof -
   336 proof -
   257   from a have "a = a --> P b"
   337   from a have "a = a --> P b"
   258     by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
   338     by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
   259   thus ?thesis by iprover
   339   thus ?thesis by iprover
   260 qed
   340 qed
   261 
   341 
       
   342 lemmas trancl_induct [consumes 1, induct set: trancl_set] = trancl_induct' [to_set]
       
   343 
       
   344 lemmas trancl_induct2' =
       
   345   trancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,
       
   346                  consumes 1, case_names base step]
       
   347 
   262 lemmas trancl_induct2 =
   348 lemmas trancl_induct2 =
   263   trancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
   349   trancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
   264                  consumes 1, case_names base step]
   350                  consumes 1, case_names base step]
   265 
   351 
   266 lemma trancl_trans_induct:
   352 lemma trancl_trans_induct':
   267   assumes major: "(x,y) : r^+"
   353   assumes major: "r^++ x y"
   268     and cases: "!!x y. (x,y) : r ==> P x y"
   354     and cases: "!!x y. r x y ==> P x y"
   269       "!!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z"
   355       "!!x y z. [| r^++ x y; P x y; r^++ y z; P y z |] ==> P x z"
   270   shows "P x y"
   356   shows "P x y"
   271   -- {* Another induction rule for trancl, incorporating transitivity *}
   357   -- {* Another induction rule for trancl, incorporating transitivity *}
   272   by (iprover intro: r_into_trancl major [THEN trancl_induct] cases)
   358   by (iprover intro: major [THEN trancl_induct'] cases)
   273 
   359 
   274 inductive_cases tranclE: "(a, b) : r^+"
   360 lemmas trancl_trans_induct = trancl_trans_induct' [to_set]
       
   361 
       
   362 lemma tranclE:
       
   363   assumes H: "(a, b) : r^+"
       
   364   and cases: "(a, b) : r ==> P" "\<And>c. (a, c) : r^+ ==> (c, b) : r ==> P"
       
   365   shows P
       
   366   using H [simplified trancl_set_def, simplified]
       
   367   by cases (auto intro: cases [simplified trancl_set_def, simplified])
   275 
   368 
   276 lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s"
   369 lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s"
   277   apply (rule subsetI)
   370   apply (rule subsetI)
   278   apply (rule_tac p="x" in PairE, clarify)
   371   apply (rule_tac p="x" in PairE, clarify)
   279   apply (erule trancl_induct, auto) 
   372   apply (erule trancl_induct, auto) 
   291   thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+
   384   thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+
   292 qed
   385 qed
   293 
   386 
   294 lemmas trancl_trans = trans_trancl [THEN transD, standard]
   387 lemmas trancl_trans = trans_trancl [THEN transD, standard]
   295 
   388 
       
   389 lemma trancl_trans':
       
   390   assumes xy: "r^++ x y"
       
   391   and yz: "r^++ y z"
       
   392   shows "r^++ x z" using yz xy
       
   393   by induct iprover+
       
   394 
   296 lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r"
   395 lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r"
   297 apply(auto)
   396 apply(auto)
   298 apply(erule trancl_induct)
   397 apply(erule trancl_induct)
   299 apply assumption
   398 apply assumption
   300 apply(unfold trans_def)
   399 apply(unfold trans_def)
   301 apply(blast)
   400 apply(blast)
   302 done
   401 done
   303 
   402 
   304 lemma rtrancl_trancl_trancl: assumes r: "(x, y) \<in> r^*"
   403 lemma rtrancl_trancl_trancl': assumes r: "r^** x y"
   305   shows "!!z. (y, z) \<in> r^+ ==> (x, z) \<in> r^+" using r
   404   shows "!!z. r^++ y z ==> r^++ x z" using r
   306   by induct (iprover intro: trancl_trans)+
   405   by induct (iprover intro: trancl_trans')+
   307 
   406 
   308 lemma trancl_into_trancl2: "(a, b) \<in> r ==> (b, c) \<in> r^+ ==> (a, c) \<in> r^+"
   407 lemmas rtrancl_trancl_trancl = rtrancl_trancl_trancl' [to_set]
   309   by (erule transD [OF trans_trancl r_into_trancl])
   408 
       
   409 lemma trancl_into_trancl2': "r a b ==> r^++ b c ==> r^++ a c"
       
   410   by (erule trancl_trans' [OF trancl.r_into_trancl])
       
   411 
       
   412 lemmas trancl_into_trancl2 = trancl_into_trancl2' [to_set]
   310 
   413 
   311 lemma trancl_insert:
   414 lemma trancl_insert:
   312   "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
   415   "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
   313   -- {* primitive recursion for @{text trancl} over finite relations *}
   416   -- {* primitive recursion for @{text trancl} over finite relations *}
   314   apply (rule equalityI)
   417   apply (rule equalityI)
   319   apply (rule subsetI)
   422   apply (rule subsetI)
   320   apply (blast intro: trancl_mono rtrancl_mono
   423   apply (blast intro: trancl_mono rtrancl_mono
   321     [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
   424     [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
   322   done
   425   done
   323 
   426 
   324 lemma trancl_converseI: "(x, y) \<in> (r^+)^-1 ==> (x, y) \<in> (r^-1)^+"
   427 lemma trancl_converseI': "(r^++)^--1 x y ==> (r^--1)^++ x y"
   325   apply (drule converseD)
   428   apply (drule conversepD)
   326   apply (erule trancl.induct)
   429   apply (erule trancl_induct')
   327   apply (iprover intro: converseI trancl_trans)+
   430   apply (iprover intro: conversepI trancl_trans')+
   328   done
   431   done
   329 
   432 
   330 lemma trancl_converseD: "(x, y) \<in> (r^-1)^+ ==> (x, y) \<in> (r^+)^-1"
   433 lemmas trancl_converseI = trancl_converseI' [to_set]
   331   apply (rule converseI)
   434 
   332   apply (erule trancl.induct)
   435 lemma trancl_converseD': "(r^--1)^++ x y ==> (r^++)^--1 x y"
   333   apply (iprover dest: converseD intro: trancl_trans)+
   436   apply (rule conversepI)
   334   done
   437   apply (erule trancl_induct')
   335 
   438   apply (iprover dest: conversepD intro: trancl_trans')+
   336 lemma trancl_converse: "(r^-1)^+ = (r^+)^-1"
   439   done
   337   by (fastsimp simp add: split_tupled_all
   440 
   338     intro!: trancl_converseI trancl_converseD)
   441 lemmas trancl_converseD = trancl_converseD' [to_set]
       
   442 
       
   443 lemma trancl_converse': "(r^--1)^++ = (r^++)^--1"
       
   444   by (fastsimp simp add: expand_fun_eq
       
   445     intro!: trancl_converseI' dest!: trancl_converseD')
       
   446 
       
   447 lemmas trancl_converse = trancl_converse' [to_set]
   339 
   448 
   340 lemma sym_trancl: "sym r ==> sym (r^+)"
   449 lemma sym_trancl: "sym r ==> sym (r^+)"
   341   by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
   450   by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
   342 
   451 
   343 lemma converse_trancl_induct:
   452 lemma converse_trancl_induct':
   344   assumes major: "(a,b) : r^+"
   453   assumes major: "r^++ a b"
   345     and cases: "!!y. (y,b) : r ==> P(y)"
   454     and cases: "!!y. r y b ==> P(y)"
   346       "!!y z.[| (y,z) : r;  (z,b) : r^+;  P(z) |] ==> P(y)"
   455       "!!y z.[| r y z;  r^++ z b;  P(z) |] ==> P(y)"
   347   shows "P a"
   456   shows "P a"
   348   apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]])
   457   apply (rule trancl_induct' [OF trancl_converseI', OF conversepI, OF major])
   349    apply (rule cases)
   458    apply (rule cases)
   350    apply (erule converseD)
   459    apply (erule conversepD)
   351   apply (blast intro: prems dest!: trancl_converseD)
   460   apply (blast intro: prems dest!: trancl_converseD' conversepD)
   352   done
   461   done
   353 
   462 
   354 lemma tranclD: "(x, y) \<in> R^+ ==> EX z. (x, z) \<in> R \<and> (z, y) \<in> R^*"
   463 lemmas converse_trancl_induct = converse_trancl_induct' [to_set]
   355   apply (erule converse_trancl_induct, auto)
   464 
   356   apply (blast intro: rtrancl_trans)
   465 lemma tranclD': "R^++ x y ==> EX z. R x z \<and> R^** z y"
   357   done
   466   apply (erule converse_trancl_induct', auto)
       
   467   apply (blast intro: rtrancl_trans')
       
   468   done
       
   469 
       
   470 lemmas tranclD = tranclD' [to_set]
   358 
   471 
   359 lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
   472 lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
   360   by (blast elim: tranclE dest: trancl_into_rtrancl)
   473   by (blast elim: tranclE dest: trancl_into_rtrancl)
   361 
   474 
   362 lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"
   475 lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"
   371   apply (simp only: split_tupled_all)
   484   apply (simp only: split_tupled_all)
   372   apply (erule tranclE)
   485   apply (erule tranclE)
   373   apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
   486   apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
   374   done
   487   done
   375 
   488 
   376 lemma reflcl_trancl [simp]: "(r^+)^= = r^*"
   489 lemma reflcl_trancl' [simp]: "(r^++)^== = r^**"
   377   apply safe
   490   apply (safe intro!: order_antisym)
   378    apply (erule trancl_into_rtrancl)
   491    apply (erule trancl_into_rtrancl')
   379   apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
   492   apply (blast elim: rtrancl.cases dest: rtrancl_into_trancl1')
   380   done
   493   done
       
   494 
       
   495 lemmas reflcl_trancl [simp] = reflcl_trancl' [to_set]
   381 
   496 
   382 lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
   497 lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
   383   apply safe
   498   apply safe
   384    apply (drule trancl_into_rtrancl, simp)
   499    apply (drule trancl_into_rtrancl, simp)
   385   apply (erule rtranclE, safe)
   500   apply (erule rtranclE, safe)
   392   by (auto elim: trancl_induct)
   507   by (auto elim: trancl_induct)
   393 
   508 
   394 lemma rtrancl_empty [simp]: "{}^* = Id"
   509 lemma rtrancl_empty [simp]: "{}^* = Id"
   395   by (rule subst [OF reflcl_trancl]) simp
   510   by (rule subst [OF reflcl_trancl]) simp
   396 
   511 
   397 lemma rtranclD: "(a, b) \<in> R^* ==> a = b \<or> a \<noteq> b \<and> (a, b) \<in> R^+"
   512 lemma rtranclD': "R^** a b ==> a = b \<or> a \<noteq> b \<and> R^++ a b"
   398   by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)
   513   by (force simp add: reflcl_trancl' [symmetric] simp del: reflcl_trancl')
       
   514 
       
   515 lemmas rtranclD = rtranclD' [to_set]
   399 
   516 
   400 lemma rtrancl_eq_or_trancl:
   517 lemma rtrancl_eq_or_trancl:
   401   "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
   518   "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
   402   by (fast elim: trancl_into_rtrancl dest: rtranclD)
   519   by (fast elim: trancl_into_rtrancl dest: rtranclD)
   403 
   520 
   448   apply (erule trancl_induct)
   565   apply (erule trancl_induct)
   449    apply (fast intro: r_r_into_trancl)
   566    apply (fast intro: r_r_into_trancl)
   450   apply (fast intro: r_r_into_trancl trancl_trans)
   567   apply (fast intro: r_r_into_trancl trancl_trans)
   451   done
   568   done
   452 
   569 
   453 lemma trancl_rtrancl_trancl:
   570 lemma trancl_rtrancl_trancl':
   454     "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r\<^sup>* ==> (a, c) \<in> r\<^sup>+"
   571     "r\<^sup>+\<^sup>+ a b ==> r\<^sup>*\<^sup>* b c ==> r\<^sup>+\<^sup>+ a c"
   455   apply (drule tranclD)
   572   apply (drule tranclD')
   456   apply (erule exE, erule conjE)
   573   apply (erule exE, erule conjE)
   457   apply (drule rtrancl_trans, assumption)
   574   apply (drule rtrancl_trans', assumption)
   458   apply (drule rtrancl_into_trancl2, assumption, assumption)
   575   apply (drule rtrancl_into_trancl2', assumption, assumption)
   459   done
   576   done
       
   577 
       
   578 lemmas trancl_rtrancl_trancl = trancl_rtrancl_trancl' [to_set]
   460 
   579 
   461 lemmas transitive_closure_trans [trans] =
   580 lemmas transitive_closure_trans [trans] =
   462   r_r_into_trancl trancl_trans rtrancl_trans
   581   r_r_into_trancl trancl_trans rtrancl_trans
   463   trancl_into_trancl trancl_into_trancl2
   582   trancl_into_trancl trancl_into_trancl2
   464   rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
   583   rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
   465   rtrancl_trancl_trancl trancl_rtrancl_trancl
   584   rtrancl_trancl_trancl trancl_rtrancl_trancl
   466 
   585 
       
   586 lemmas transitive_closure_trans' [trans] =
       
   587   trancl_trans' rtrancl_trans'
       
   588   trancl.trancl_into_trancl trancl_into_trancl2'
       
   589   rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl'
       
   590   rtrancl_trancl_trancl' trancl_rtrancl_trancl'
       
   591 
   467 declare trancl_into_rtrancl [elim]
   592 declare trancl_into_rtrancl [elim]
   468 
   593 
   469 declare rtranclE [cases set: rtrancl]
   594 declare rtranclE [cases set: rtrancl_set]
   470 declare tranclE [cases set: trancl]
   595 declare tranclE [cases set: trancl_set]
   471 
   596 
   472 
   597 
   473 
   598 
   474 
   599 
   475 
   600 
   488     val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";
   613     val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";
   489     val rtrancl_trans = thm "rtrancl_trans";
   614     val rtrancl_trans = thm "rtrancl_trans";
   490 
   615 
   491   fun decomp (Trueprop $ t) =
   616   fun decomp (Trueprop $ t) =
   492     let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
   617     let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
   493         let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
   618         let fun decr (Const ("Transitive_Closure.rtrancl_set", _ ) $ r) = (r,"r*")
   494               | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
   619               | decr (Const ("Transitive_Closure.trancl_set", _ ) $ r)  = (r,"r+")
   495               | decr r = (r,"r");
   620               | decr r = (r,"r");
   496             val (rel,r) = decr rel;
   621             val (rel,r) = decr rel;
   497         in SOME (a,b,rel,r) end
   622         in SOME (a,b,rel,r) end
   498       | dec _ =  NONE
   623       | dec _ =  NONE
   499     in dec t end;
   624     in dec t end;
   500 
   625 
   501   end);
   626   end);
   502 
   627 
       
   628 structure Tranclp_Tac = Trancl_Tac_Fun (
       
   629   struct
       
   630     val r_into_trancl = thm "trancl.r_into_trancl";
       
   631     val trancl_trans  = thm "trancl_trans'";
       
   632     val rtrancl_refl = thm "rtrancl.rtrancl_refl";
       
   633     val r_into_rtrancl = thm "r_into_rtrancl'";
       
   634     val trancl_into_rtrancl = thm "trancl_into_rtrancl'";
       
   635     val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl'";
       
   636     val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl'";
       
   637     val rtrancl_trans = thm "rtrancl_trans'";
       
   638 
       
   639   fun decomp (Trueprop $ t) =
       
   640     let fun dec (rel $ a $ b) =
       
   641         let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
       
   642               | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
       
   643               | decr r = (r,"r");
       
   644             val (rel,r) = decr rel;
       
   645         in SOME (a, b, Envir.beta_eta_contract rel, r) end
       
   646       | dec _ =  NONE
       
   647     in dec t end;
       
   648 
       
   649   end);
       
   650 
   503 change_simpset (fn ss => ss
   651 change_simpset (fn ss => ss
   504   addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
   652   addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
   505   addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)));
   653   addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac))
       
   654   addSolver (mk_solver "Tranclp" (fn _ => Tranclp_Tac.trancl_tac))
       
   655   addSolver (mk_solver "Rtranclp" (fn _ => Tranclp_Tac.rtrancl_tac)));
   506 
   656 
   507 *}
   657 *}
   508 
   658 
   509 (* Optional methods *)
   659 (* Optional methods *)
   510 
   660 
   512   {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.trancl_tac) *}
   662   {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.trancl_tac) *}
   513   {* simple transitivity reasoner *}
   663   {* simple transitivity reasoner *}
   514 method_setup rtrancl =
   664 method_setup rtrancl =
   515   {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.rtrancl_tac) *}
   665   {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.rtrancl_tac) *}
   516   {* simple transitivity reasoner *}
   666   {* simple transitivity reasoner *}
       
   667 method_setup tranclp =
       
   668   {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.trancl_tac) *}
       
   669   {* simple transitivity reasoner (predicate version) *}
       
   670 method_setup rtranclp =
       
   671   {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.rtrancl_tac) *}
       
   672   {* simple transitivity reasoner (predicate version) *}
   517 
   673 
   518 end
   674 end