src/HOLCF/Tools/holcf_library.ML
changeset 35475 979019ab92eb
child 35476 8e5eb497b042
equal deleted inserted replaced
35474:7675a41e755a 35475:979019ab92eb
       
     1 (*  Title:      HOLCF/Tools/holcf_library.ML
       
     2     Author:     Brian Huffman
       
     3 
       
     4 Functions for constructing HOLCF types and terms.
       
     5 *)
       
     6 
       
     7 structure HOLCF_Library =
       
     8 struct
       
     9 
       
    10 (*** Operations from Isabelle/HOL ***)
       
    11 
       
    12 val boolT = HOLogic.boolT;
       
    13 
       
    14 val mk_equals = Logic.mk_equals;
       
    15 val mk_eq = HOLogic.mk_eq;
       
    16 val mk_trp = HOLogic.mk_Trueprop;
       
    17 val mk_fst = HOLogic.mk_fst;
       
    18 val mk_snd = HOLogic.mk_snd;
       
    19 val mk_not = HOLogic.mk_not;
       
    20 val mk_conj = HOLogic.mk_conj;
       
    21 val mk_disj = HOLogic.mk_disj;
       
    22 
       
    23 fun mk_ex (x, t) = HOLogic.exists_const (fastype_of x) $ Term.lambda x t;
       
    24 
       
    25 
       
    26 (*** Basic HOLCF concepts ***)
       
    27 
       
    28 fun mk_bottom T = Const (@{const_name UU}, T);
       
    29 
       
    30 fun below_const T = Const (@{const_name below}, [T, T] ---> boolT);
       
    31 fun mk_below (t, u) = below_const (fastype_of t) $ t $ u;
       
    32 
       
    33 fun mk_undef t = mk_eq (t, mk_bottom (fastype_of t));
       
    34 
       
    35 fun mk_defined t = mk_not (mk_undef t);
       
    36 
       
    37 fun mk_compact t =
       
    38   Const (@{const_name compact}, fastype_of t --> boolT) $ t;
       
    39 
       
    40 fun mk_cont t =
       
    41   Const (@{const_name cont}, fastype_of t --> boolT) $ t;
       
    42 
       
    43 
       
    44 (*** Continuous function space ***)
       
    45 
       
    46 (* ->> is taken from holcf_logic.ML *)
       
    47 fun mk_cfunT (T, U) = Type(@{type_name "->"}, [T, U]);
       
    48 
       
    49 infixr 6 ->>; val (op ->>) = mk_cfunT;
       
    50 infix -->>; val (op -->>) = Library.foldr mk_cfunT;
       
    51 
       
    52 fun dest_cfunT (Type(@{type_name "->"}, [T, U])) = (T, U)
       
    53   | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []);
       
    54 
       
    55 fun capply_const (S, T) =
       
    56   Const(@{const_name Rep_CFun}, (S ->> T) --> (S --> T));
       
    57 
       
    58 fun cabs_const (S, T) =
       
    59   Const(@{const_name Abs_CFun}, (S --> T) --> (S ->> T));
       
    60 
       
    61 fun mk_cabs t =
       
    62   let val T = fastype_of t
       
    63   in cabs_const (Term.domain_type T, Term.range_type T) $ t end
       
    64 
       
    65 (* builds the expression (% v1 v2 .. vn. rhs) *)
       
    66 fun lambdas [] rhs = rhs
       
    67   | lambdas (v::vs) rhs = Term.lambda v (lambdas vs rhs);
       
    68 
       
    69 (* builds the expression (LAM v. rhs) *)
       
    70 fun big_lambda v rhs =
       
    71   cabs_const (fastype_of v, fastype_of rhs) $ Term.lambda v rhs;
       
    72 
       
    73 (* builds the expression (LAM v1 v2 .. vn. rhs) *)
       
    74 fun big_lambdas [] rhs = rhs
       
    75   | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs);
       
    76 
       
    77 fun mk_capply (t, u) =
       
    78   let val (S, T) =
       
    79     case fastype_of t of
       
    80         Type(@{type_name "->"}, [S, T]) => (S, T)
       
    81       | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]);
       
    82   in capply_const (S, T) $ t $ u end;
       
    83 
       
    84 infix 9 ` ; val (op `) = mk_capply;
       
    85 
       
    86 val list_ccomb : term * term list -> term = Library.foldl mk_capply;
       
    87 
       
    88 fun mk_ID T = Const (@{const_name ID}, T ->> T);
       
    89 
       
    90 fun cfcomp_const (T, U, V) =
       
    91   Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V));
       
    92 
       
    93 fun mk_cfcomp (f, g) =
       
    94   let
       
    95     val (U, V) = dest_cfunT (fastype_of f);
       
    96     val (T, U') = dest_cfunT (fastype_of g);
       
    97   in
       
    98     if U = U'
       
    99     then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g)
       
   100     else raise TYPE ("mk_cfcomp", [U, U'], [f, g])
       
   101   end;
       
   102 
       
   103 fun mk_strict t =
       
   104   let val (T, U) = dest_cfunT (fastype_of t);
       
   105   in mk_eq (t ` mk_bottom T, mk_bottom U) end;
       
   106 
       
   107 
       
   108 (*** Product type ***)
       
   109 
       
   110 val mk_prodT = HOLogic.mk_prodT
       
   111 
       
   112 fun mk_tupleT [] = HOLogic.unitT
       
   113   | mk_tupleT [T] = T
       
   114   | mk_tupleT (T :: Ts) = mk_prodT (T, mk_tupleT Ts);
       
   115 
       
   116 (* builds the expression (v1,v2,..,vn) *)
       
   117 fun mk_tuple [] = HOLogic.unit
       
   118   | mk_tuple (t::[]) = t
       
   119   | mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts);
       
   120 
       
   121 (* builds the expression (%(v1,v2,..,vn). rhs) *)
       
   122 fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
       
   123   | lambda_tuple (v::[]) rhs = Term.lambda v rhs
       
   124   | lambda_tuple (v::vs) rhs =
       
   125       HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs));
       
   126 
       
   127 
       
   128 (*** Lifted cpo type ***)
       
   129 
       
   130 fun mk_upT T = Type(@{type_name "u"}, [T]);
       
   131 
       
   132 fun dest_upT (Type(@{type_name "u"}, [T])) = T
       
   133   | dest_upT T = raise TYPE ("dest_upT", [T], []);
       
   134 
       
   135 fun up_const T = Const(@{const_name up}, T ->> mk_upT T);
       
   136 
       
   137 fun mk_up t = up_const (fastype_of t) ` t;
       
   138 
       
   139 fun fup_const (T, U) =
       
   140   Const(@{const_name fup}, (T ->> U) ->> mk_upT T ->> U);
       
   141 
       
   142 fun from_up T = fup_const (T, T) ` mk_ID T;
       
   143 
       
   144 
       
   145 (*** Strict product type ***)
       
   146 
       
   147 val oneT = @{typ "one"};
       
   148 
       
   149 fun mk_sprodT (T, U) = Type(@{type_name "**"}, [T, U]);
       
   150 
       
   151 fun dest_sprodT (Type(@{type_name "**"}, [T, U])) = (T, U)
       
   152   | dest_sprodT T = raise TYPE ("dest_sprodT", [T], []);
       
   153 
       
   154 fun spair_const (T, U) =
       
   155   Const(@{const_name spair}, T ->> U ->> mk_sprodT (T, U));
       
   156 
       
   157 (* builds the expression (:t, u:) *)
       
   158 fun mk_spair (t, u) =
       
   159   spair_const (fastype_of t, fastype_of u) ` t ` u;
       
   160 
       
   161 (* builds the expression (:t1,t2,..,tn:) *)
       
   162 fun mk_stuple [] = @{term "ONE"}
       
   163   | mk_stuple (t::[]) = t
       
   164   | mk_stuple (t::ts) = mk_spair (t, mk_stuple ts);
       
   165 
       
   166 fun sfst_const (T, U) =
       
   167   Const(@{const_name sfst}, mk_sprodT (T, U) ->> T);
       
   168 
       
   169 fun ssnd_const (T, U) =
       
   170   Const(@{const_name ssnd}, mk_sprodT (T, U) ->> U);
       
   171 
       
   172 
       
   173 (*** Strict sum type ***)
       
   174 
       
   175 fun mk_ssumT (T, U) = Type(@{type_name "++"}, [T, U]);
       
   176 
       
   177 fun dest_ssumT (Type(@{type_name "++"}, [T, U])) = (T, U)
       
   178   | dest_ssumT T = raise TYPE ("dest_ssumT", [T], []);
       
   179 
       
   180 fun sinl_const (T, U) = Const(@{const_name sinl}, T ->> mk_ssumT (T, U));
       
   181 fun sinr_const (T, U) = Const(@{const_name sinr}, U ->> mk_ssumT (T, U));
       
   182 
       
   183 (* builds the list [sinl(t1), sinl(sinr(t2)), ... sinr(...sinr(tn))] *)
       
   184 fun mk_sinjects ts =
       
   185   let
       
   186     val Ts = map fastype_of ts;
       
   187     fun combine (t, T) (us, U) =
       
   188       let
       
   189         val v = sinl_const (T, U) ` t;
       
   190         val vs = map (fn u => sinr_const (T, U) ` u) us;
       
   191       in
       
   192         (v::vs, mk_ssumT (T, U))
       
   193       end
       
   194     fun inj [] = error "mk_sinjects: empty list"
       
   195       | inj ((t, T)::[]) = ([t], T)
       
   196       | inj ((t, T)::ts) = combine (t, T) (inj ts);
       
   197   in
       
   198     fst (inj (ts ~~ Ts))
       
   199   end;
       
   200 
       
   201 fun sscase_const (T, U, V) =
       
   202   Const(@{const_name sscase},
       
   203     (T ->> V) ->> (U ->> V) ->> mk_ssumT (T, U) ->> V);
       
   204 
       
   205 fun from_sinl (T, U) =
       
   206   sscase_const (T, U, T) ` mk_ID T ` mk_bottom (U ->> T);
       
   207 
       
   208 fun from_sinr (T, U) =
       
   209   sscase_const (T, U, U) ` mk_bottom (T ->> U) ` mk_ID U;
       
   210 
       
   211 
       
   212 (*** pattern match monad type ***)
       
   213 
       
   214 fun mk_matchT T = Type (@{type_name "maybe"}, [T]);
       
   215 
       
   216 fun dest_matchT (Type(@{type_name "maybe"}, [T])) = T
       
   217   | dest_matchT T = raise TYPE ("dest_matchT", [T], []);
       
   218 
       
   219 fun mk_fail T = Const (@{const_name "Fixrec.fail"}, mk_matchT T);
       
   220 
       
   221 fun return_const T = Const (@{const_name "Fixrec.return"}, T ->> mk_matchT T);
       
   222 fun mk_return t = return_const (fastype_of t) ` t;
       
   223 
       
   224 
       
   225 (*** lifted boolean type ***)
       
   226 
       
   227 val trT = @{typ "tr"};
       
   228 
       
   229 
       
   230 (*** theory of fixed points ***)
       
   231 
       
   232 fun mk_fix t =
       
   233   let val (T, _) = dest_cfunT (fastype_of t)
       
   234   in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end;
       
   235 
       
   236 
       
   237 end;