src/HOL/Fun.thy
changeset 54147 97a8ff4e4ac9
parent 53927 abe2b313f0e5
child 54578 9387251b6a46
equal deleted inserted replaced
54146:97f69d44f732 54147:97a8ff4e4ac9
   773   by (rule the_inv_into_f_f)
   773   by (rule the_inv_into_f_f)
   774 
   774 
   775 
   775 
   776 subsection {* Cantor's Paradox *}
   776 subsection {* Cantor's Paradox *}
   777 
   777 
   778 lemma Cantors_paradox [no_atp]:
   778 lemma Cantors_paradox:
   779   "\<not>(\<exists>f. f ` A = Pow A)"
   779   "\<not>(\<exists>f. f ` A = Pow A)"
   780 proof clarify
   780 proof clarify
   781   fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast
   781   fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast
   782   let ?X = "{a \<in> A. a \<notin> f a}"
   782   let ?X = "{a \<in> A. a \<notin> f a}"
   783   have "?X \<in> Pow A" unfolding Pow_def by auto
   783   have "?X \<in> Pow A" unfolding Pow_def by auto