src/HOLCF/Completion.thy
changeset 31076 99fe356cbbc2
parent 30729 461ee3e49ad3
child 39967 1c6dce3ef477
equal deleted inserted replaced
31075:a9d6cf6de9a8 31076:99fe356cbbc2
   106  apply (drule (1) idealD3 [OF ideal_A])
   106  apply (drule (1) idealD3 [OF ideal_A])
   107  apply fast
   107  apply fast
   108 done
   108 done
   109 
   109 
   110 lemma typedef_ideal_po:
   110 lemma typedef_ideal_po:
   111   fixes Abs :: "'a set \<Rightarrow> 'b::sq_ord"
   111   fixes Abs :: "'a set \<Rightarrow> 'b::below"
   112   assumes type: "type_definition Rep Abs {S. ideal S}"
   112   assumes type: "type_definition Rep Abs {S. ideal S}"
   113   assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
   113   assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
   114   shows "OFCLASS('b, po_class)"
   114   shows "OFCLASS('b, po_class)"
   115  apply (intro_classes, unfold less)
   115  apply (intro_classes, unfold below)
   116    apply (rule subset_refl)
   116    apply (rule subset_refl)
   117   apply (erule (1) subset_trans)
   117   apply (erule (1) subset_trans)
   118  apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
   118  apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
   119  apply (erule (1) subset_antisym)
   119  apply (erule (1) subset_antisym)
   120 done
   120 done
   121 
   121 
   122 lemma
   122 lemma
   123   fixes Abs :: "'a set \<Rightarrow> 'b::po"
   123   fixes Abs :: "'a set \<Rightarrow> 'b::po"
   124   assumes type: "type_definition Rep Abs {S. ideal S}"
   124   assumes type: "type_definition Rep Abs {S. ideal S}"
   125   assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
   125   assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
   126   assumes S: "chain S"
   126   assumes S: "chain S"
   127   shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))"
   127   shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))"
   128     and typedef_ideal_rep_contlub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
   128     and typedef_ideal_rep_contlub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
   129 proof -
   129 proof -
   130   have 1: "ideal (\<Union>i. Rep (S i))"
   130   have 1: "ideal (\<Union>i. Rep (S i))"
   131     apply (rule ideal_UN)
   131     apply (rule ideal_UN)
   132      apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq])
   132      apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq])
   133     apply (subst less [symmetric])
   133     apply (subst below [symmetric])
   134     apply (erule chain_mono [OF S])
   134     apply (erule chain_mono [OF S])
   135     done
   135     done
   136   hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))"
   136   hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))"
   137     by (simp add: type_definition.Abs_inverse [OF type])
   137     by (simp add: type_definition.Abs_inverse [OF type])
   138   show 3: "range S <<| Abs (\<Union>i. Rep (S i))"
   138   show 3: "range S <<| Abs (\<Union>i. Rep (S i))"
   139     apply (rule is_lubI)
   139     apply (rule is_lubI)
   140      apply (rule is_ubI)
   140      apply (rule is_ubI)
   141      apply (simp add: less 2, fast)
   141      apply (simp add: below 2, fast)
   142     apply (simp add: less 2 is_ub_def, fast)
   142     apply (simp add: below 2 is_ub_def, fast)
   143     done
   143     done
   144   hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))"
   144   hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))"
   145     by (rule thelubI)
   145     by (rule thelubI)
   146   show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
   146   show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))"
   147     by (simp add: 4 2)
   147     by (simp add: 4 2)
   148 qed
   148 qed
   149 
   149 
   150 lemma typedef_ideal_cpo:
   150 lemma typedef_ideal_cpo:
   151   fixes Abs :: "'a set \<Rightarrow> 'b::po"
   151   fixes Abs :: "'a set \<Rightarrow> 'b::po"
   152   assumes type: "type_definition Rep Abs {S. ideal S}"
   152   assumes type: "type_definition Rep Abs {S. ideal S}"
   153   assumes less: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
   153   assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y"
   154   shows "OFCLASS('b, cpo_class)"
   154   shows "OFCLASS('b, cpo_class)"
   155 by (default, rule exI, erule typedef_ideal_lub [OF type less])
   155 by (default, rule exI, erule typedef_ideal_lub [OF type below])
   156 
   156 
   157 end
   157 end
   158 
   158 
   159 interpretation sq_le: preorder "sq_le :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool"
   159 interpretation below: preorder "below :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool"
   160 apply unfold_locales
   160 apply unfold_locales
   161 apply (rule refl_less)
   161 apply (rule below_refl)
   162 apply (erule (1) trans_less)
   162 apply (erule (1) below_trans)
   163 done
   163 done
   164 
   164 
   165 subsection {* Lemmas about least upper bounds *}
   165 subsection {* Lemmas about least upper bounds *}
   166 
   166 
   167 lemma finite_directed_contains_lub:
   167 lemma finite_directed_contains_lub:
   227 apply (drule rep_contlub)
   227 apply (drule rep_contlub)
   228 apply (simp only: thelubI [OF lub_bin_chain])
   228 apply (simp only: thelubI [OF lub_bin_chain])
   229 apply (rule subsetI, rule UN_I [where a=0], simp_all)
   229 apply (rule subsetI, rule UN_I [where a=0], simp_all)
   230 done
   230 done
   231 
   231 
   232 lemma less_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y"
   232 lemma below_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y"
   233 by (rule iffI [OF rep_mono subset_repD])
   233 by (rule iffI [OF rep_mono subset_repD])
   234 
   234 
   235 lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}"
   235 lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}"
   236 unfolding less_def rep_principal
   236 unfolding below_def rep_principal
   237 apply safe
   237 apply safe
   238 apply (erule (1) idealD3 [OF ideal_rep])
   238 apply (erule (1) idealD3 [OF ideal_rep])
   239 apply (erule subsetD, simp add: r_refl)
   239 apply (erule subsetD, simp add: r_refl)
   240 done
   240 done
   241 
   241 
   242 lemma mem_rep_iff_principal_less: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x"
   242 lemma mem_rep_iff_principal_below: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x"
   243 by (simp add: rep_eq)
   243 by (simp add: rep_eq)
   244 
   244 
   245 lemma principal_less_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x"
   245 lemma principal_below_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x"
   246 by (simp add: rep_eq)
   246 by (simp add: rep_eq)
   247 
   247 
   248 lemma principal_less_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b"
   248 lemma principal_below_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b"
   249 by (simp add: principal_less_iff_mem_rep rep_principal)
   249 by (simp add: principal_below_iff_mem_rep rep_principal)
   250 
   250 
   251 lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a"
   251 lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a"
   252 unfolding po_eq_conv [where 'a='b] principal_less_iff ..
   252 unfolding po_eq_conv [where 'a='b] principal_below_iff ..
   253 
   253 
   254 lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x"
   254 lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x"
   255 by (simp add: rep_eq)
   255 by (simp add: rep_eq)
   256 
   256 
   257 lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b"
   257 lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b"
   258 by (simp only: principal_less_iff)
   258 by (simp only: principal_below_iff)
   259 
   259 
   260 lemma lessI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u"
   260 lemma belowI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u"
   261 unfolding principal_less_iff_mem_rep
   261 unfolding principal_below_iff_mem_rep
   262 by (simp add: less_def subset_eq)
   262 by (simp add: below_def subset_eq)
   263 
   263 
   264 lemma lub_principal_rep: "principal ` rep x <<| x"
   264 lemma lub_principal_rep: "principal ` rep x <<| x"
   265 apply (rule is_lubI)
   265 apply (rule is_lubI)
   266 apply (rule ub_imageI)
   266 apply (rule ub_imageI)
   267 apply (erule repD)
   267 apply (erule repD)
   268 apply (subst less_def)
   268 apply (subst below_def)
   269 apply (rule subsetI)
   269 apply (rule subsetI)
   270 apply (drule (1) ub_imageD)
   270 apply (drule (1) ub_imageD)
   271 apply (simp add: rep_eq)
   271 apply (simp add: rep_eq)
   272 done
   272 done
   273 
   273 
   297   shows "chain (\<lambda>i. lub (f ` take i ` rep x))"
   297   shows "chain (\<lambda>i. lub (f ` take i ` rep x))"
   298  apply (rule chainI)
   298  apply (rule chainI)
   299  apply (rule is_lub_thelub0)
   299  apply (rule is_lub_thelub0)
   300   apply (rule basis_fun_lemma0, erule f_mono)
   300   apply (rule basis_fun_lemma0, erule f_mono)
   301  apply (rule is_ubI, clarsimp, rename_tac a)
   301  apply (rule is_ubI, clarsimp, rename_tac a)
   302  apply (rule trans_less [OF f_mono [OF take_chain]])
   302  apply (rule below_trans [OF f_mono [OF take_chain]])
   303  apply (rule is_ub_thelub0)
   303  apply (rule is_ub_thelub0)
   304   apply (rule basis_fun_lemma0, erule f_mono)
   304   apply (rule basis_fun_lemma0, erule f_mono)
   305  apply simp
   305  apply simp
   306 done
   306 done
   307 
   307 
   311   shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))"
   311   shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))"
   312  apply (rule is_lubI)
   312  apply (rule is_lubI)
   313  apply (rule ub_imageI, rename_tac a)
   313  apply (rule ub_imageI, rename_tac a)
   314   apply (cut_tac a=a in take_covers, erule exE, rename_tac i)
   314   apply (cut_tac a=a in take_covers, erule exE, rename_tac i)
   315   apply (erule subst)
   315   apply (erule subst)
   316   apply (rule rev_trans_less)
   316   apply (rule rev_below_trans)
   317    apply (rule_tac x=i in is_ub_thelub)
   317    apply (rule_tac x=i in is_ub_thelub)
   318    apply (rule basis_fun_lemma1, erule f_mono)
   318    apply (rule basis_fun_lemma1, erule f_mono)
   319   apply (rule is_ub_thelub0)
   319   apply (rule is_ub_thelub0)
   320    apply (rule basis_fun_lemma0, erule f_mono)
   320    apply (rule basis_fun_lemma0, erule f_mono)
   321   apply simp
   321   apply simp
   322  apply (rule is_lub_thelub [OF _ ub_rangeI])
   322  apply (rule is_lub_thelub [OF _ ub_rangeI])
   323   apply (rule basis_fun_lemma1, erule f_mono)
   323   apply (rule basis_fun_lemma1, erule f_mono)
   324  apply (rule is_lub_thelub0)
   324  apply (rule is_lub_thelub0)
   325   apply (rule basis_fun_lemma0, erule f_mono)
   325   apply (rule basis_fun_lemma0, erule f_mono)
   326  apply (rule is_ubI, clarsimp, rename_tac a)
   326  apply (rule is_ubI, clarsimp, rename_tac a)
   327  apply (rule trans_less [OF f_mono [OF take_less]])
   327  apply (rule below_trans [OF f_mono [OF take_less]])
   328  apply (erule (1) ub_imageD)
   328  apply (erule (1) ub_imageD)
   329 done
   329 done
   330 
   330 
   331 lemma basis_fun_lemma:
   331 lemma basis_fun_lemma:
   332   fixes f :: "'a::type \<Rightarrow> 'c::cpo"
   332   fixes f :: "'a::type \<Rightarrow> 'c::cpo"
   348      apply (rule is_lub_thelub0 [OF lub ub_imageI])
   348      apply (rule is_lub_thelub0 [OF lub ub_imageI])
   349      apply (rule is_ub_thelub0 [OF lub imageI])
   349      apply (rule is_ub_thelub0 [OF lub imageI])
   350      apply (erule (1) subsetD [OF rep_mono])
   350      apply (erule (1) subsetD [OF rep_mono])
   351     apply (rule is_lub_thelub0 [OF lub ub_imageI])
   351     apply (rule is_lub_thelub0 [OF lub ub_imageI])
   352     apply (simp add: rep_contlub, clarify)
   352     apply (simp add: rep_contlub, clarify)
   353     apply (erule rev_trans_less [OF is_ub_thelub])
   353     apply (erule rev_below_trans [OF is_ub_thelub])
   354     apply (erule is_ub_thelub0 [OF lub imageI])
   354     apply (erule is_ub_thelub0 [OF lub imageI])
   355     done
   355     done
   356 qed
   356 qed
   357 
   357 
   358 lemma basis_fun_principal:
   358 lemma basis_fun_principal:
   365 done
   365 done
   366 
   366 
   367 lemma basis_fun_mono:
   367 lemma basis_fun_mono:
   368   assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
   368   assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b"
   369   assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b"
   369   assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b"
   370   assumes less: "\<And>a. f a \<sqsubseteq> g a"
   370   assumes below: "\<And>a. f a \<sqsubseteq> g a"
   371   shows "basis_fun f \<sqsubseteq> basis_fun g"
   371   shows "basis_fun f \<sqsubseteq> basis_fun g"
   372  apply (rule less_cfun_ext)
   372  apply (rule below_cfun_ext)
   373  apply (simp only: basis_fun_beta f_mono g_mono)
   373  apply (simp only: basis_fun_beta f_mono g_mono)
   374  apply (rule is_lub_thelub0)
   374  apply (rule is_lub_thelub0)
   375   apply (rule basis_fun_lemma, erule f_mono)
   375   apply (rule basis_fun_lemma, erule f_mono)
   376  apply (rule ub_imageI, rename_tac a)
   376  apply (rule ub_imageI, rename_tac a)
   377  apply (rule trans_less [OF less])
   377  apply (rule below_trans [OF below])
   378  apply (rule is_ub_thelub0)
   378  apply (rule is_ub_thelub0)
   379   apply (rule basis_fun_lemma, erule g_mono)
   379   apply (rule basis_fun_lemma, erule g_mono)
   380  apply (erule imageI)
   380  apply (erule imageI)
   381 done
   381 done
   382 
   382 
   383 lemma compact_principal [simp]: "compact (principal a)"
   383 lemma compact_principal [simp]: "compact (principal a)"
   384 by (rule compactI2, simp add: principal_less_iff_mem_rep rep_contlub)
   384 by (rule compactI2, simp add: principal_below_iff_mem_rep rep_contlub)
   385 
   385 
   386 subsection {* Bifiniteness of ideal completions *}
   386 subsection {* Bifiniteness of ideal completions *}
   387 
   387 
   388 definition
   388 definition
   389   completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where
   389   completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where