1174 proof safe |
1174 proof safe |
1175 fix i show "positive_integral (f i) \<le> positive_integral (f (Suc i))" |
1175 fix i show "positive_integral (f i) \<le> positive_integral (f (Suc i))" |
1176 apply (rule positive_integral_mono) |
1176 apply (rule positive_integral_mono) |
1177 using `f \<up> u` unfolding isoton_def le_fun_def by auto |
1177 using `f \<up> u` unfolding isoton_def le_fun_def by auto |
1178 next |
1178 next |
1179 have "u \<in> borel_measurable M" |
|
1180 using borel_measurable_SUP[of UNIV f] assms by (auto simp: isoton_def) |
|
1181 have u: "u = (SUP i. f i)" using `f \<up> u` unfolding isoton_def by auto |
1179 have u: "u = (SUP i. f i)" using `f \<up> u` unfolding isoton_def by auto |
1182 |
1180 |
1183 show "(SUP i. positive_integral (f i)) = positive_integral u" |
1181 show "(SUP i. positive_integral (f i)) = positive_integral u" |
1184 proof (rule antisym) |
1182 proof (rule antisym) |
1185 from `f \<up> u`[THEN isoton_Sup, unfolded le_fun_def] |
1183 from `f \<up> u`[THEN isoton_Sup, unfolded le_fun_def] |
1196 assumes "\<And>i x. x \<in> space M \<Longrightarrow> f i x \<le> f (Suc i) x" |
1194 assumes "\<And>i x. x \<in> space M \<Longrightarrow> f i x \<le> f (Suc i) x" |
1197 assumes "\<And>i. f i \<in> borel_measurable M" |
1195 assumes "\<And>i. f i \<in> borel_measurable M" |
1198 shows "(SUP i. positive_integral (f i)) = positive_integral (\<lambda>x. SUP i. f i x)" |
1196 shows "(SUP i. positive_integral (f i)) = positive_integral (\<lambda>x. SUP i. f i x)" |
1199 (is "_ = positive_integral ?u") |
1197 (is "_ = positive_integral ?u") |
1200 proof - |
1198 proof - |
1201 have "?u \<in> borel_measurable M" |
|
1202 using borel_measurable_SUP[of _ f] assms by (simp add: SUPR_fun_expand) |
|
1203 show ?thesis |
1199 show ?thesis |
1204 proof (rule antisym) |
1200 proof (rule antisym) |
1205 show "(SUP j. positive_integral (f j)) \<le> positive_integral ?u" |
1201 show "(SUP j. positive_integral (f j)) \<le> positive_integral ?u" |
1206 by (auto intro!: SUP_leI positive_integral_mono le_SUPI) |
1202 by (auto intro!: SUP_leI positive_integral_mono le_SUPI) |
1207 next |
1203 next |
1208 def rf \<equiv> "\<lambda>i. \<lambda>x\<in>space M. f i x" and ru \<equiv> "\<lambda>x\<in>space M. ?u x" |
1204 def rf \<equiv> "\<lambda>i. \<lambda>x\<in>space M. f i x" and ru \<equiv> "\<lambda>x\<in>space M. ?u x" |
1209 have "\<And>i. rf i \<in> borel_measurable M" unfolding rf_def |
1205 have "\<And>i. rf i \<in> borel_measurable M" unfolding rf_def |
1210 using assms by (simp cong: measurable_cong) |
1206 using assms by (simp cong: measurable_cong) |
1211 moreover have iso: "rf \<up> ru" using assms unfolding rf_def ru_def |
1207 moreover have iso: "rf \<up> ru" using assms unfolding rf_def ru_def |
1212 unfolding isoton_def SUPR_fun_expand le_fun_def fun_eq_iff |
1208 unfolding isoton_def le_fun_def fun_eq_iff SUPR_apply |
1213 using SUP_const[OF UNIV_not_empty] |
1209 using SUP_const[OF UNIV_not_empty] |
1214 by (auto simp: restrict_def le_fun_def SUPR_fun_expand fun_eq_iff) |
1210 by (auto simp: restrict_def le_fun_def fun_eq_iff) |
1215 ultimately have "positive_integral ru \<le> (SUP i. positive_integral (rf i))" |
1211 ultimately have "positive_integral ru \<le> (SUP i. positive_integral (rf i))" |
1216 unfolding positive_integral_alt[of ru] |
1212 unfolding positive_integral_alt[of ru] |
1217 by (auto simp: le_fun_def intro!: SUP_leI positive_integral_SUP_approx) |
1213 by (auto simp: le_fun_def intro!: SUP_leI positive_integral_SUP_approx) |
1218 then show "positive_integral ?u \<le> (SUP i. positive_integral (f i))" |
1214 then show "positive_integral ?u \<le> (SUP i. positive_integral (f i))" |
1219 unfolding ru_def rf_def by (simp cong: positive_integral_cong) |
1215 unfolding ru_def rf_def by (simp cong: positive_integral_cong) |
1352 |
1348 |
1353 text {* Fatou's lemma: convergence theorem on limes inferior *} |
1349 text {* Fatou's lemma: convergence theorem on limes inferior *} |
1354 lemma (in measure_space) positive_integral_lim_INF: |
1350 lemma (in measure_space) positive_integral_lim_INF: |
1355 fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> pextreal" |
1351 fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> pextreal" |
1356 assumes "\<And>i. u i \<in> borel_measurable M" |
1352 assumes "\<And>i. u i \<in> borel_measurable M" |
1357 shows "positive_integral (SUP n. INF m. u (m + n)) \<le> |
1353 shows "positive_integral (\<lambda>x. SUP n. INF m. u (m + n) x) \<le> |
1358 (SUP n. INF m. positive_integral (u (m + n)))" |
1354 (SUP n. INF m. positive_integral (u (m + n)))" |
1359 proof - |
1355 proof - |
1360 have "(SUP n. INF m. u (m + n)) \<in> borel_measurable M" |
1356 have "positive_integral (\<lambda>x. SUP n. INF m. u (m + n) x) |
1361 by (auto intro!: borel_measurable_SUP borel_measurable_INF assms) |
1357 = (SUP n. positive_integral (\<lambda>x. INF m. u (m + n) x))" |
1362 |
1358 using assms |
1363 have "(\<lambda>n. INF m. u (m + n)) \<up> (SUP n. INF m. u (m + n))" |
1359 by (intro positive_integral_monotone_convergence_SUP[symmetric] INF_mono) |
1364 proof (unfold isoton_def, safe intro!: INF_mono bexI) |
1360 (auto simp del: add_Suc simp add: add_Suc[symmetric]) |
1365 fix i m show "u (Suc m + i) \<le> u (m + Suc i)" by simp |
|
1366 qed simp |
|
1367 from positive_integral_isoton[OF this] assms |
|
1368 have "positive_integral (SUP n. INF m. u (m + n)) = |
|
1369 (SUP n. positive_integral (INF m. u (m + n)))" |
|
1370 unfolding isoton_def by (simp add: borel_measurable_INF) |
|
1371 also have "\<dots> \<le> (SUP n. INF m. positive_integral (u (m + n)))" |
1361 also have "\<dots> \<le> (SUP n. INF m. positive_integral (u (m + n)))" |
1372 apply (rule SUP_mono) |
1362 by (auto intro!: SUP_mono bexI le_INFI positive_integral_mono INF_leI) |
1373 apply (rule_tac x=n in bexI) |
|
1374 by (auto intro!: positive_integral_mono INFI_bound INF_leI exI simp: INFI_fun_expand) |
|
1375 finally show ?thesis . |
1363 finally show ?thesis . |
1376 qed |
1364 qed |
1377 |
1365 |
1378 lemma (in measure_space) measure_space_density: |
1366 lemma (in measure_space) measure_space_density: |
1379 assumes borel: "u \<in> borel_measurable M" |
1367 assumes borel: "u \<in> borel_measurable M" |
1958 have SUP_F: "\<And>x. (SUP n. Real (f n x)) = Real (u x)" |
1946 have SUP_F: "\<And>x. (SUP n. Real (f n x)) = Real (u x)" |
1959 using mono pos pos_u lim by (rule SUP_eq_LIMSEQ[THEN iffD2]) |
1947 using mono pos pos_u lim by (rule SUP_eq_LIMSEQ[THEN iffD2]) |
1960 |
1948 |
1961 have borel_f: "\<And>i. (\<lambda>x. Real (f i x)) \<in> borel_measurable M" |
1949 have borel_f: "\<And>i. (\<lambda>x. Real (f i x)) \<in> borel_measurable M" |
1962 using i unfolding integrable_def by auto |
1950 using i unfolding integrable_def by auto |
1963 hence "(SUP i. (\<lambda>x. Real (f i x))) \<in> borel_measurable M" |
1951 hence "(\<lambda>x. SUP i. Real (f i x)) \<in> borel_measurable M" |
1964 by auto |
1952 by auto |
1965 hence borel_u: "u \<in> borel_measurable M" |
1953 hence borel_u: "u \<in> borel_measurable M" |
1966 using pos_u by (auto simp: borel_measurable_Real_eq SUPR_fun_expand SUP_F) |
1954 using pos_u by (auto simp: borel_measurable_Real_eq SUP_F) |
1967 |
1955 |
1968 have integral_eq: "\<And>n. positive_integral (\<lambda>x. Real (f n x)) = Real (integral (f n))" |
1956 have integral_eq: "\<And>n. positive_integral (\<lambda>x. Real (f n x)) = Real (integral (f n))" |
1969 using i unfolding integral_def integrable_def by (auto simp: Real_real) |
1957 using i unfolding integral_def integrable_def by (auto simp: Real_real) |
1970 |
1958 |
1971 have pos_integral: "\<And>n. 0 \<le> integral (f n)" |
1959 have pos_integral: "\<And>n. 0 \<le> integral (f n)" |
2142 qed |
2130 qed |
2143 hence "\<And>i. positive_integral (\<lambda>x. Real \<bar>u i x - u' x\<bar>) = 0" using eq_0 by auto |
2131 hence "\<And>i. positive_integral (\<lambda>x. Real \<bar>u i x - u' x\<bar>) = 0" using eq_0 by auto |
2144 thus ?thesis by simp |
2132 thus ?thesis by simp |
2145 next |
2133 next |
2146 assume neq_0: "positive_integral (\<lambda>x. Real (2 * w x)) \<noteq> 0" |
2134 assume neq_0: "positive_integral (\<lambda>x. Real (2 * w x)) \<noteq> 0" |
2147 have "positive_integral (\<lambda>x. Real (2 * w x)) = positive_integral (SUP n. INF m. (\<lambda>x. Real (?diff (m + n) x)))" |
2135 have "positive_integral (\<lambda>x. Real (2 * w x)) = positive_integral (\<lambda>x. SUP n. INF m. Real (?diff (m + n) x))" |
2148 proof (rule positive_integral_cong, unfold SUPR_fun_expand INFI_fun_expand, subst add_commute) |
2136 proof (rule positive_integral_cong, subst add_commute) |
2149 fix x assume x: "x \<in> space M" |
2137 fix x assume x: "x \<in> space M" |
2150 show "Real (2 * w x) = (SUP n. INF m. Real (?diff (n + m) x))" |
2138 show "Real (2 * w x) = (SUP n. INF m. Real (?diff (n + m) x))" |
2151 proof (rule LIMSEQ_imp_lim_INF[symmetric]) |
2139 proof (rule LIMSEQ_imp_lim_INF[symmetric]) |
2152 fix j show "0 \<le> ?diff j x" using diff_less_2w[OF x, of j] by simp |
2140 fix j show "0 \<le> ?diff j x" using diff_less_2w[OF x, of j] by simp |
2153 next |
2141 next |