doc-src/TutorialI/CTL/document/CTLind.tex
changeset 11277 a2bff98d6e5d
parent 11196 bb4ede27fcb7
child 11494 23a118849801
equal deleted inserted replaced
11276:f8353c722d4e 11277:a2bff98d6e5d
    57 \isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
    57 \isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
    58 expresses.  Simplification shows that this is a path starting with \isa{t} 
    58 expresses.  Simplification shows that this is a path starting with \isa{t} 
    59 and that the instantiated induction hypothesis implies the conclusion.
    59 and that the instantiated induction hypothesis implies the conclusion.
    60 
    60 
    61 Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding
    61 Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding
    62 path starts from \isa{s}, we want to show \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. This
    62 path starts from \isa{s}, we want to show \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. For the
    63 can be generalized by proving that every point \isa{t} ``between''
    63 inductive proof this must be generalized to the statement that every point \isa{t}
    64 \isa{s} and \isa{A}, i.e.\ all of \isa{Avoid\ s\ A},
    64 ``between'' \isa{s} and \isa{A}, i.e.\ all of \isa{Avoid\ s\ A},
    65 is contained in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}:%
    65 is contained in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}:%
    66 \end{isamarkuptext}%
    66 \end{isamarkuptext}%
    67 \isacommand{lemma}\ Avoid{\isacharunderscore}in{\isacharunderscore}lfp{\isacharbrackleft}rule{\isacharunderscore}format{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}{\isacharbrackright}{\isacharcolon}\isanewline
    67 \isacommand{lemma}\ Avoid{\isacharunderscore}in{\isacharunderscore}lfp{\isacharbrackleft}rule{\isacharunderscore}format{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}{\isacharbrackright}{\isacharcolon}\isanewline
    68 \ \ {\isachardoublequote}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ t\ {\isasymin}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequote}%
    68 \ \ {\isachardoublequote}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ t\ {\isasymin}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequote}%
    69 \begin{isamarkuptxt}%
    69 \begin{isamarkuptxt}%
    77 The formal counterpart of this proof sketch is a well-founded induction
    77 The formal counterpart of this proof sketch is a well-founded induction
    78 w.r.t.\ \isa{M} restricted to (roughly speaking) \isa{Avoid\ s\ A\ {\isacharminus}\ A}:
    78 w.r.t.\ \isa{M} restricted to (roughly speaking) \isa{Avoid\ s\ A\ {\isacharminus}\ A}:
    79 \begin{isabelle}%
    79 \begin{isabelle}%
    80 \ \ \ \ \ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
    80 \ \ \ \ \ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
    81 \end{isabelle}
    81 \end{isabelle}
    82 As we shall see in a moment, the absence of infinite \isa{A}-avoiding paths
    82 As we shall see presently, the absence of infinite \isa{A}-avoiding paths
    83 starting from \isa{s} implies well-foundedness of this relation. For the
    83 starting from \isa{s} implies well-foundedness of this relation. For the
    84 moment we assume this and proceed with the induction:%
    84 moment we assume this and proceed with the induction:%
    85 \end{isamarkuptxt}%
    85 \end{isamarkuptxt}%
    86 \isacommand{apply}{\isacharparenleft}subgoal{\isacharunderscore}tac\ {\isachardoublequote}wf{\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}{\isachardoublequote}{\isacharparenright}\isanewline
    86 \isacommand{apply}{\isacharparenleft}subgoal{\isacharunderscore}tac\ {\isachardoublequote}wf{\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}{\isachardoublequote}{\isacharparenright}\isanewline
    87 \ \isacommand{apply}{\isacharparenleft}erule{\isacharunderscore}tac\ a\ {\isacharequal}\ t\ \isakeyword{in}\ wf{\isacharunderscore}induct{\isacharparenright}\isanewline
    87 \ \isacommand{apply}{\isacharparenleft}erule{\isacharunderscore}tac\ a\ {\isacharequal}\ t\ \isakeyword{in}\ wf{\isacharunderscore}induct{\isacharparenright}\isanewline