src/HOL/Library/Product_Vector.thy
changeset 30019 a2f19e0a28b2
child 30729 461ee3e49ad3
equal deleted inserted replaced
30018:690c65b8ad1a 30019:a2f19e0a28b2
       
     1 (*  Title:      HOL/Library/Product_Vector.thy
       
     2     Author:     Brian Huffman
       
     3 *)
       
     4 
       
     5 header {* Cartesian Products as Vector Spaces *}
       
     6 
       
     7 theory Product_Vector
       
     8 imports Inner_Product Product_plus
       
     9 begin
       
    10 
       
    11 subsection {* Product is a real vector space *}
       
    12 
       
    13 instantiation "*" :: (real_vector, real_vector) real_vector
       
    14 begin
       
    15 
       
    16 definition scaleR_prod_def:
       
    17   "scaleR r A = (scaleR r (fst A), scaleR r (snd A))"
       
    18 
       
    19 lemma fst_scaleR [simp]: "fst (scaleR r A) = scaleR r (fst A)"
       
    20   unfolding scaleR_prod_def by simp
       
    21 
       
    22 lemma snd_scaleR [simp]: "snd (scaleR r A) = scaleR r (snd A)"
       
    23   unfolding scaleR_prod_def by simp
       
    24 
       
    25 lemma scaleR_Pair [simp]: "scaleR r (a, b) = (scaleR r a, scaleR r b)"
       
    26   unfolding scaleR_prod_def by simp
       
    27 
       
    28 instance proof
       
    29   fix a b :: real and x y :: "'a \<times> 'b"
       
    30   show "scaleR a (x + y) = scaleR a x + scaleR a y"
       
    31     by (simp add: expand_prod_eq scaleR_right_distrib)
       
    32   show "scaleR (a + b) x = scaleR a x + scaleR b x"
       
    33     by (simp add: expand_prod_eq scaleR_left_distrib)
       
    34   show "scaleR a (scaleR b x) = scaleR (a * b) x"
       
    35     by (simp add: expand_prod_eq)
       
    36   show "scaleR 1 x = x"
       
    37     by (simp add: expand_prod_eq)
       
    38 qed
       
    39 
       
    40 end
       
    41 
       
    42 subsection {* Product is a normed vector space *}
       
    43 
       
    44 instantiation
       
    45   "*" :: (real_normed_vector, real_normed_vector) real_normed_vector
       
    46 begin
       
    47 
       
    48 definition norm_prod_def:
       
    49   "norm x = sqrt ((norm (fst x))\<twosuperior> + (norm (snd x))\<twosuperior>)"
       
    50 
       
    51 definition sgn_prod_def:
       
    52   "sgn (x::'a \<times> 'b) = scaleR (inverse (norm x)) x"
       
    53 
       
    54 lemma norm_Pair: "norm (a, b) = sqrt ((norm a)\<twosuperior> + (norm b)\<twosuperior>)"
       
    55   unfolding norm_prod_def by simp
       
    56 
       
    57 instance proof
       
    58   fix r :: real and x y :: "'a \<times> 'b"
       
    59   show "0 \<le> norm x"
       
    60     unfolding norm_prod_def by simp
       
    61   show "norm x = 0 \<longleftrightarrow> x = 0"
       
    62     unfolding norm_prod_def
       
    63     by (simp add: expand_prod_eq)
       
    64   show "norm (x + y) \<le> norm x + norm y"
       
    65     unfolding norm_prod_def
       
    66     apply (rule order_trans [OF _ real_sqrt_sum_squares_triangle_ineq])
       
    67     apply (simp add: add_mono power_mono norm_triangle_ineq)
       
    68     done
       
    69   show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
       
    70     unfolding norm_prod_def
       
    71     apply (simp add: norm_scaleR power_mult_distrib)
       
    72     apply (simp add: right_distrib [symmetric])
       
    73     apply (simp add: real_sqrt_mult_distrib)
       
    74     done
       
    75   show "sgn x = scaleR (inverse (norm x)) x"
       
    76     by (rule sgn_prod_def)
       
    77 qed
       
    78 
       
    79 end
       
    80 
       
    81 subsection {* Product is an inner product space *}
       
    82 
       
    83 instantiation "*" :: (real_inner, real_inner) real_inner
       
    84 begin
       
    85 
       
    86 definition inner_prod_def:
       
    87   "inner x y = inner (fst x) (fst y) + inner (snd x) (snd y)"
       
    88 
       
    89 lemma inner_Pair [simp]: "inner (a, b) (c, d) = inner a c + inner b d"
       
    90   unfolding inner_prod_def by simp
       
    91 
       
    92 instance proof
       
    93   fix r :: real
       
    94   fix x y z :: "'a::real_inner * 'b::real_inner"
       
    95   show "inner x y = inner y x"
       
    96     unfolding inner_prod_def
       
    97     by (simp add: inner_commute)
       
    98   show "inner (x + y) z = inner x z + inner y z"
       
    99     unfolding inner_prod_def
       
   100     by (simp add: inner_left_distrib)
       
   101   show "inner (scaleR r x) y = r * inner x y"
       
   102     unfolding inner_prod_def
       
   103     by (simp add: inner_scaleR_left right_distrib)
       
   104   show "0 \<le> inner x x"
       
   105     unfolding inner_prod_def
       
   106     by (intro add_nonneg_nonneg inner_ge_zero)
       
   107   show "inner x x = 0 \<longleftrightarrow> x = 0"
       
   108     unfolding inner_prod_def expand_prod_eq
       
   109     by (simp add: add_nonneg_eq_0_iff)
       
   110   show "norm x = sqrt (inner x x)"
       
   111     unfolding norm_prod_def inner_prod_def
       
   112     by (simp add: power2_norm_eq_inner)
       
   113 qed
       
   114 
       
   115 end
       
   116 
       
   117 subsection {* Pair operations are linear and continuous *}
       
   118 
       
   119 interpretation fst!: bounded_linear fst
       
   120   apply (unfold_locales)
       
   121   apply (rule fst_add)
       
   122   apply (rule fst_scaleR)
       
   123   apply (rule_tac x="1" in exI, simp add: norm_Pair)
       
   124   done
       
   125 
       
   126 interpretation snd!: bounded_linear snd
       
   127   apply (unfold_locales)
       
   128   apply (rule snd_add)
       
   129   apply (rule snd_scaleR)
       
   130   apply (rule_tac x="1" in exI, simp add: norm_Pair)
       
   131   done
       
   132 
       
   133 text {* TODO: move to NthRoot *}
       
   134 lemma sqrt_add_le_add_sqrt:
       
   135   assumes x: "0 \<le> x" and y: "0 \<le> y"
       
   136   shows "sqrt (x + y) \<le> sqrt x + sqrt y"
       
   137 apply (rule power2_le_imp_le)
       
   138 apply (simp add: real_sum_squared_expand add_nonneg_nonneg x y)
       
   139 apply (simp add: mult_nonneg_nonneg x y)
       
   140 apply (simp add: add_nonneg_nonneg x y)
       
   141 done
       
   142 
       
   143 lemma bounded_linear_Pair:
       
   144   assumes f: "bounded_linear f"
       
   145   assumes g: "bounded_linear g"
       
   146   shows "bounded_linear (\<lambda>x. (f x, g x))"
       
   147 proof
       
   148   interpret f: bounded_linear f by fact
       
   149   interpret g: bounded_linear g by fact
       
   150   fix x y and r :: real
       
   151   show "(f (x + y), g (x + y)) = (f x, g x) + (f y, g y)"
       
   152     by (simp add: f.add g.add)
       
   153   show "(f (r *\<^sub>R x), g (r *\<^sub>R x)) = r *\<^sub>R (f x, g x)"
       
   154     by (simp add: f.scaleR g.scaleR)
       
   155   obtain Kf where "0 < Kf" and norm_f: "\<And>x. norm (f x) \<le> norm x * Kf"
       
   156     using f.pos_bounded by fast
       
   157   obtain Kg where "0 < Kg" and norm_g: "\<And>x. norm (g x) \<le> norm x * Kg"
       
   158     using g.pos_bounded by fast
       
   159   have "\<forall>x. norm (f x, g x) \<le> norm x * (Kf + Kg)"
       
   160     apply (rule allI)
       
   161     apply (simp add: norm_Pair)
       
   162     apply (rule order_trans [OF sqrt_add_le_add_sqrt], simp, simp)
       
   163     apply (simp add: right_distrib)
       
   164     apply (rule add_mono [OF norm_f norm_g])
       
   165     done
       
   166   then show "\<exists>K. \<forall>x. norm (f x, g x) \<le> norm x * K" ..
       
   167 qed
       
   168 
       
   169 text {*
       
   170   TODO: The next three proofs are nearly identical to each other.
       
   171   Is there a good way to factor out the common parts?
       
   172 *}
       
   173 
       
   174 lemma LIMSEQ_Pair:
       
   175   assumes "X ----> a" and "Y ----> b"
       
   176   shows "(\<lambda>n. (X n, Y n)) ----> (a, b)"
       
   177 proof (rule LIMSEQ_I)
       
   178   fix r :: real assume "0 < r"
       
   179   then have "0 < r / sqrt 2" (is "0 < ?s")
       
   180     by (simp add: divide_pos_pos)
       
   181   obtain M where M: "\<forall>n\<ge>M. norm (X n - a) < ?s"
       
   182     using LIMSEQ_D [OF `X ----> a` `0 < ?s`] ..
       
   183   obtain N where N: "\<forall>n\<ge>N. norm (Y n - b) < ?s"
       
   184     using LIMSEQ_D [OF `Y ----> b` `0 < ?s`] ..
       
   185   have "\<forall>n\<ge>max M N. norm ((X n, Y n) - (a, b)) < r"
       
   186     using M N by (simp add: real_sqrt_sum_squares_less norm_Pair)
       
   187   then show "\<exists>n0. \<forall>n\<ge>n0. norm ((X n, Y n) - (a, b)) < r" ..
       
   188 qed
       
   189 
       
   190 lemma Cauchy_Pair:
       
   191   assumes "Cauchy X" and "Cauchy Y"
       
   192   shows "Cauchy (\<lambda>n. (X n, Y n))"
       
   193 proof (rule CauchyI)
       
   194   fix r :: real assume "0 < r"
       
   195   then have "0 < r / sqrt 2" (is "0 < ?s")
       
   196     by (simp add: divide_pos_pos)
       
   197   obtain M where M: "\<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < ?s"
       
   198     using CauchyD [OF `Cauchy X` `0 < ?s`] ..
       
   199   obtain N where N: "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (Y m - Y n) < ?s"
       
   200     using CauchyD [OF `Cauchy Y` `0 < ?s`] ..
       
   201   have "\<forall>m\<ge>max M N. \<forall>n\<ge>max M N. norm ((X m, Y m) - (X n, Y n)) < r"
       
   202     using M N by (simp add: real_sqrt_sum_squares_less norm_Pair)
       
   203   then show "\<exists>n0. \<forall>m\<ge>n0. \<forall>n\<ge>n0. norm ((X m, Y m) - (X n, Y n)) < r" ..
       
   204 qed
       
   205 
       
   206 lemma LIM_Pair:
       
   207   assumes "f -- x --> a" and "g -- x --> b"
       
   208   shows "(\<lambda>x. (f x, g x)) -- x --> (a, b)"
       
   209 proof (rule LIM_I)
       
   210   fix r :: real assume "0 < r"
       
   211   then have "0 < r / sqrt 2" (is "0 < ?e")
       
   212     by (simp add: divide_pos_pos)
       
   213   obtain s where s: "0 < s"
       
   214     "\<forall>z. z \<noteq> x \<and> norm (z - x) < s \<longrightarrow> norm (f z - a) < ?e"
       
   215     using LIM_D [OF `f -- x --> a` `0 < ?e`] by fast
       
   216   obtain t where t: "0 < t"
       
   217     "\<forall>z. z \<noteq> x \<and> norm (z - x) < t \<longrightarrow> norm (g z - b) < ?e"
       
   218     using LIM_D [OF `g -- x --> b` `0 < ?e`] by fast
       
   219   have "0 < min s t \<and>
       
   220     (\<forall>z. z \<noteq> x \<and> norm (z - x) < min s t \<longrightarrow> norm ((f z, g z) - (a, b)) < r)"
       
   221     using s t by (simp add: real_sqrt_sum_squares_less norm_Pair)
       
   222   then show
       
   223     "\<exists>s>0. \<forall>z. z \<noteq> x \<and> norm (z - x) < s \<longrightarrow> norm ((f z, g z) - (a, b)) < r" ..
       
   224 qed
       
   225 
       
   226 lemma isCont_Pair [simp]:
       
   227   "\<lbrakk>isCont f x; isCont g x\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. (f x, g x)) x"
       
   228   unfolding isCont_def by (rule LIM_Pair)
       
   229 
       
   230 
       
   231 subsection {* Product is a complete vector space *}
       
   232 
       
   233 instance "*" :: (banach, banach) banach
       
   234 proof
       
   235   fix X :: "nat \<Rightarrow> 'a \<times> 'b" assume "Cauchy X"
       
   236   have 1: "(\<lambda>n. fst (X n)) ----> lim (\<lambda>n. fst (X n))"
       
   237     using fst.Cauchy [OF `Cauchy X`]
       
   238     by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
       
   239   have 2: "(\<lambda>n. snd (X n)) ----> lim (\<lambda>n. snd (X n))"
       
   240     using snd.Cauchy [OF `Cauchy X`]
       
   241     by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
       
   242   have "X ----> (lim (\<lambda>n. fst (X n)), lim (\<lambda>n. snd (X n)))"
       
   243     using LIMSEQ_Pair [OF 1 2] by simp
       
   244   then show "convergent X"
       
   245     by (rule convergentI)
       
   246 qed
       
   247 
       
   248 subsection {* Frechet derivatives involving pairs *}
       
   249 
       
   250 lemma FDERIV_Pair:
       
   251   assumes f: "FDERIV f x :> f'" and g: "FDERIV g x :> g'"
       
   252   shows "FDERIV (\<lambda>x. (f x, g x)) x :> (\<lambda>h. (f' h, g' h))"
       
   253 apply (rule FDERIV_I)
       
   254 apply (rule bounded_linear_Pair)
       
   255 apply (rule FDERIV_bounded_linear [OF f])
       
   256 apply (rule FDERIV_bounded_linear [OF g])
       
   257 apply (simp add: norm_Pair)
       
   258 apply (rule real_LIM_sandwich_zero)
       
   259 apply (rule LIM_add_zero)
       
   260 apply (rule FDERIV_D [OF f])
       
   261 apply (rule FDERIV_D [OF g])
       
   262 apply (rename_tac h)
       
   263 apply (simp add: divide_nonneg_pos)
       
   264 apply (rename_tac h)
       
   265 apply (subst add_divide_distrib [symmetric])
       
   266 apply (rule divide_right_mono [OF _ norm_ge_zero])
       
   267 apply (rule order_trans [OF sqrt_add_le_add_sqrt])
       
   268 apply simp
       
   269 apply simp
       
   270 apply simp
       
   271 done
       
   272 
       
   273 end