src/HOL/Probability/Conditional_Expectation.thy
changeset 79583 a521c241e946
parent 73932 fd21b4a93043
child 79599 2c18ac57e92e
equal deleted inserted replaced
79582:7822b55b26ce 79583:a521c241e946
  1143       using that \<open>x < y\<close> by (auto simp add: field_split_simps algebra_simps)
  1143       using that \<open>x < y\<close> by (auto simp add: field_split_simps algebra_simps)
  1144     moreover have "(q x - q y)/(x - y) \<le> phi y"
  1144     moreover have "(q x - q y)/(x - y) \<le> phi y"
  1145     unfolding phi_def proof (rule cInf_greatest, auto)
  1145     unfolding phi_def proof (rule cInf_greatest, auto)
  1146       fix t assume "t \<in> I" "y < t"
  1146       fix t assume "t \<in> I" "y < t"
  1147       have "(q x - q y) / (x - y) \<le> (q x - q t) / (x - t)"
  1147       have "(q x - q y) / (x - y) \<le> (q x - q t) / (x - t)"
  1148         apply (rule convex_on_diff[OF q(2)]) using \<open>y < t\<close> \<open>x < y\<close> \<open>t \<in> I\<close> \<open>x \<in> I\<close> by auto
  1148         apply (rule convex_on_slope_le[OF q(2)]) using \<open>y < t\<close> \<open>x < y\<close> \<open>t \<in> I\<close> \<open>x \<in> I\<close> by auto
  1149       also have "... \<le> (q y - q t) / (y - t)"
  1149       also have "... \<le> (q y - q t) / (y - t)"
  1150         apply (rule convex_on_diff[OF q(2)]) using \<open>y < t\<close> \<open>x < y\<close> \<open>t \<in> I\<close> \<open>x \<in> I\<close> by auto
  1150         apply (rule convex_on_slope_le[OF q(2)]) using \<open>y < t\<close> \<open>x < y\<close> \<open>t \<in> I\<close> \<open>x \<in> I\<close> by auto
  1151       finally show "(q x - q y) / (x - y) \<le> (q y - q t) / (y - t)" by simp
  1151       finally show "(q x - q y) / (x - y) \<le> (q y - q t) / (y - t)" by simp
  1152     next
  1152     next
  1153       obtain e where "0 < e" "ball y e \<subseteq> I" using \<open>open I\<close> \<open>y \<in> I\<close> openE by blast
  1153       obtain e where "0 < e" "ball y e \<subseteq> I" using \<open>open I\<close> \<open>y \<in> I\<close> openE by blast
  1154       then have "y + e/2 \<in> {y<..} \<inter> I" by (auto simp: dist_real_def)
  1154       then have "y + e/2 \<in> {y<..} \<inter> I" by (auto simp: dist_real_def)
  1155       then show "{y<..} \<inter> I = {} \<Longrightarrow> False" by auto
  1155       then show "{y<..} \<inter> I = {} \<Longrightarrow> False" by auto