src/ZF/pair.ML
changeset 0 a5a9c433f639
child 6 8ce8c4d13d4d
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	ZF/pair
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 Ordered pairs in Zermelo-Fraenkel Set Theory 
       
     7 *)
       
     8 
       
     9 (** Lemmas for showing that <a,b> uniquely determines a and b **)
       
    10 
       
    11 val doubleton_iff = prove_goal ZF.thy
       
    12     "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
       
    13  (fn _=> [ (resolve_tac [extension RS iff_trans] 1),
       
    14            (fast_tac upair_cs 1) ]);
       
    15 
       
    16 val Pair_iff = prove_goalw ZF.thy [Pair_def]
       
    17     "<a,b> = <c,d> <-> a=c & b=d"
       
    18  (fn _=> [ (SIMP_TAC (FOL_ss addrews [doubleton_iff]) 1),
       
    19            (fast_tac FOL_cs 1) ]);
       
    20 
       
    21 val Pair_inject = standard (Pair_iff RS iffD1 RS conjE);
       
    22 
       
    23 val Pair_inject1 = prove_goal ZF.thy "<a,b> = <c,d> ==> a=c"
       
    24  (fn [major]=>
       
    25   [ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);
       
    26 
       
    27 val Pair_inject2 = prove_goal ZF.thy "<a,b> = <c,d> ==> b=d"
       
    28  (fn [major]=>
       
    29   [ (rtac (major RS Pair_inject) 1), (assume_tac 1) ]);
       
    30 
       
    31 val Pair_neq_0 = prove_goalw ZF.thy [Pair_def] "<a,b>=0 ==> P"
       
    32  (fn [major]=>
       
    33   [ (rtac (major RS equalityD1 RS subsetD RS emptyE) 1),
       
    34     (rtac consI1 1) ]);
       
    35 
       
    36 val Pair_neq_fst = prove_goalw ZF.thy [Pair_def] "<a,b>=a ==> P"
       
    37  (fn [major]=>
       
    38   [ (rtac (consI1 RS mem_anti_sym RS FalseE) 1),
       
    39     (rtac (major RS subst) 1),
       
    40     (rtac consI1 1) ]);
       
    41 
       
    42 val Pair_neq_snd = prove_goalw ZF.thy [Pair_def] "<a,b>=b ==> P"
       
    43  (fn [major]=>
       
    44   [ (rtac (consI1 RS consI2 RS mem_anti_sym RS FalseE) 1),
       
    45     (rtac (major RS subst) 1),
       
    46     (rtac (consI1 RS consI2) 1) ]);
       
    47 
       
    48 
       
    49 (*** Sigma: Disjoint union of a family of sets
       
    50      Generalizes Cartesian product ***)
       
    51 
       
    52 val SigmaI = prove_goalw ZF.thy [Sigma_def]
       
    53     "[| a:A;  b:B(a) |] ==> <a,b> : Sigma(A,B)"
       
    54  (fn prems=> [ (REPEAT (resolve_tac (prems@[singletonI,UN_I]) 1)) ]);
       
    55 
       
    56 (*The general elimination rule*)
       
    57 val SigmaE = prove_goalw ZF.thy [Sigma_def]
       
    58     "[| c: Sigma(A,B);  \
       
    59 \       !!x y.[| x:A;  y:B(x);  c=<x,y> |] ==> P \
       
    60 \    |] ==> P"
       
    61  (fn major::prems=>
       
    62   [ (cut_facts_tac [major] 1),
       
    63     (REPEAT (eresolve_tac [UN_E, singletonE] 1 ORELSE ares_tac prems 1)) ]);
       
    64 
       
    65 (** Elimination of <a,b>:A*B -- introduces no eigenvariables **)
       
    66 val SigmaD1 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> a : A"
       
    67  (fn [major]=>
       
    68   [ (rtac (major RS SigmaE) 1),
       
    69     (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);
       
    70 
       
    71 val SigmaD2 = prove_goal ZF.thy "<a,b> : Sigma(A,B) ==> b : B(a)"
       
    72  (fn [major]=>
       
    73   [ (rtac (major RS SigmaE) 1),
       
    74     (REPEAT (eresolve_tac [asm_rl,Pair_inject,ssubst] 1)) ]);
       
    75 
       
    76 (*Also provable via 
       
    77   rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac)
       
    78 		  THEN prune_params_tac)
       
    79       (read_instantiate [("c","<a,b>")] SigmaE);  *)
       
    80 val SigmaE2 = prove_goal ZF.thy
       
    81     "[| <a,b> : Sigma(A,B);    \
       
    82 \       [| a:A;  b:B(a) |] ==> P   \
       
    83 \    |] ==> P"
       
    84  (fn [major,minor]=>
       
    85   [ (rtac minor 1),
       
    86     (rtac (major RS SigmaD1) 1),
       
    87     (rtac (major RS SigmaD2) 1) ]);
       
    88 
       
    89 val Sigma_cong = prove_goalw ZF.thy [Sigma_def]
       
    90     "[| A=A';  !!x. x:A' ==> B(x)=B'(x) |] ==> \
       
    91 \    Sigma(A,B) = Sigma(A',B')"
       
    92  (fn prems=> [ (prove_cong_tac (prems@[RepFun_cong]) 1) ]);
       
    93 
       
    94 val Sigma_empty1 = prove_goal ZF.thy "Sigma(0,B) = 0"
       
    95  (fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);
       
    96 
       
    97 val Sigma_empty2 = prove_goal ZF.thy "A*0 = 0"
       
    98  (fn _ => [ (fast_tac (lemmas_cs addIs [equalityI] addSEs [SigmaE]) 1) ]);
       
    99 
       
   100 
       
   101 (*** Eliminator - split ***)
       
   102 
       
   103 val split = prove_goalw ZF.thy [split_def]
       
   104     "split(%x y.c(x,y), <a,b>) = c(a,b)"
       
   105  (fn _ =>
       
   106   [ (fast_tac (upair_cs addIs [the_equality] addEs [Pair_inject]) 1) ]);
       
   107 
       
   108 val split_type = prove_goal ZF.thy
       
   109     "[|  p:Sigma(A,B);   \
       
   110 \        !!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>) \
       
   111 \    |] ==> split(%x y.c(x,y), p) : C(p)"
       
   112  (fn major::prems=>
       
   113   [ (rtac (major RS SigmaE) 1),
       
   114     (etac ssubst 1),
       
   115     (REPEAT (ares_tac (prems @ [split RS ssubst]) 1)) ]);
       
   116 
       
   117 (*This congruence rule uses NO typing information...*)
       
   118 val split_cong = prove_goalw ZF.thy [split_def] 
       
   119     "[| p=p';  !!x y.c(x,y) = c'(x,y) |] ==> \
       
   120 \    split(%x y.c(x,y), p) = split(%x y.c'(x,y), p')"
       
   121  (fn prems=> [ (prove_cong_tac (prems@[the_cong]) 1) ]);
       
   122 
       
   123 
       
   124 (*** conversions for fst and snd ***)
       
   125 
       
   126 val fst_conv = prove_goalw ZF.thy [fst_def] "fst(<a,b>) = a"
       
   127  (fn _=> [ (rtac split 1) ]);
       
   128 
       
   129 val snd_conv = prove_goalw ZF.thy [snd_def] "snd(<a,b>) = b"
       
   130  (fn _=> [ (rtac split 1) ]);
       
   131 
       
   132 
       
   133 (*** split for predicates: result type o ***)
       
   134 
       
   135 goalw ZF.thy [fsplit_def] "!!R a b. R(a,b) ==> fsplit(R, <a,b>)";
       
   136 by (REPEAT (ares_tac [refl,exI,conjI] 1));
       
   137 val fsplitI = result();
       
   138 
       
   139 val major::prems = goalw ZF.thy [fsplit_def]
       
   140     "[| fsplit(R,z);  !!x y. [| z = <x,y>;  R(x,y) |] ==> P |] ==> P";
       
   141 by (cut_facts_tac [major] 1);
       
   142 by (REPEAT (eresolve_tac (prems@[asm_rl,exE,conjE]) 1));
       
   143 val fsplitE = result();
       
   144 
       
   145 goal ZF.thy "!!R a b. fsplit(R,<a,b>) ==> R(a,b)";
       
   146 by (REPEAT (eresolve_tac [asm_rl,fsplitE,Pair_inject,ssubst] 1));
       
   147 val fsplitD = result();
       
   148 
       
   149 val pair_cs = upair_cs 
       
   150     addSIs [SigmaI]
       
   151     addSEs [SigmaE2, SigmaE, Pair_inject, make_elim succ_inject,
       
   152 	    Pair_neq_0, sym RS Pair_neq_0, succ_neq_0, sym RS succ_neq_0];
       
   153