src/ZF/IMP/Equiv.thy
changeset 76215 a642599ffdea
parent 76213 e44d86131648
child 76216 9fc34f76b4e8
equal deleted inserted replaced
76214:0c18df79b1c8 76215:a642599ffdea
     6 
     6 
     7 theory Equiv imports Denotation Com begin
     7 theory Equiv imports Denotation Com begin
     8 
     8 
     9 lemma aexp_iff [rule_format]:
     9 lemma aexp_iff [rule_format]:
    10   "\<lbrakk>a \<in> aexp; sigma: loc -> nat\<rbrakk> 
    10   "\<lbrakk>a \<in> aexp; sigma: loc -> nat\<rbrakk> 
    11     \<Longrightarrow> \<forall>n. <a,sigma> -a-> n \<longleftrightarrow> A(a,sigma) = n"
    11     \<Longrightarrow> \<forall>n. \<langle>a,sigma\<rangle> -a-> n \<longleftrightarrow> A(a,sigma) = n"
    12   apply (erule aexp.induct)
    12   apply (erule aexp.induct)
    13      apply (force intro!: evala.intros)+
    13      apply (force intro!: evala.intros)+
    14   done
    14   done
    15 
    15 
    16 declare aexp_iff [THEN iffD1, simp]
    16 declare aexp_iff [THEN iffD1, simp]
    17         aexp_iff [THEN iffD2, intro!]
    17         aexp_iff [THEN iffD2, intro!]
    18 
    18 
    19 inductive_cases [elim!]:
    19 inductive_cases [elim!]:
    20   "<true,sigma> -b-> x"
    20   "\<langle>true,sigma\<rangle> -b-> x"
    21   "<false,sigma> -b-> x"
    21   "\<langle>false,sigma\<rangle> -b-> x"
    22   "<ROp(f,a0,a1),sigma> -b-> x"
    22   "<ROp(f,a0,a1),sigma> -b-> x"
    23   "<noti(b),sigma> -b-> x"
    23   "<noti(b),sigma> -b-> x"
    24   "<b0 andi b1,sigma> -b-> x"
    24   "<b0 andi b1,sigma> -b-> x"
    25   "<b0 ori b1,sigma> -b-> x"
    25   "<b0 ori b1,sigma> -b-> x"
    26 
    26 
    27 
    27 
    28 lemma bexp_iff [rule_format]:
    28 lemma bexp_iff [rule_format]:
    29   "\<lbrakk>b \<in> bexp; sigma: loc -> nat\<rbrakk> 
    29   "\<lbrakk>b \<in> bexp; sigma: loc -> nat\<rbrakk> 
    30     \<Longrightarrow> \<forall>w. <b,sigma> -b-> w \<longleftrightarrow> B(b,sigma) = w"
    30     \<Longrightarrow> \<forall>w. \<langle>b,sigma\<rangle> -b-> w \<longleftrightarrow> B(b,sigma) = w"
    31   apply (erule bexp.induct) 
    31   apply (erule bexp.induct) 
    32   apply (auto intro!: evalb.intros)
    32   apply (auto intro!: evalb.intros)
    33   done
    33   done
    34 
    34 
    35 declare bexp_iff [THEN iffD1, simp]
    35 declare bexp_iff [THEN iffD1, simp]
    36         bexp_iff [THEN iffD2, intro!]
    36         bexp_iff [THEN iffD2, intro!]
    37 
    37 
    38 lemma com1: "<c,sigma> -c-> sigma' \<Longrightarrow> <sigma,sigma'> \<in> C(c)"
    38 lemma com1: "\<langle>c,sigma\<rangle> -c-> sigma' \<Longrightarrow> <sigma,sigma'> \<in> C(c)"
    39   apply (erule evalc.induct)
    39   apply (erule evalc.induct)
    40         apply (simp_all (no_asm_simp))
    40         apply (simp_all (no_asm_simp))
    41      txt \<open>\<open>assign\<close>\<close>
    41      txt \<open>\<open>assign\<close>\<close>
    42      apply (simp add: update_type)
    42      apply (simp add: update_type)
    43     txt \<open>\<open>comp\<close>\<close>
    43     txt \<open>\<open>comp\<close>\<close>