doc-src/TutorialI/Overview/Sets.thy
changeset 13238 a6cb18a25cbb
parent 12815 1f073030b97a
child 13249 4b3de6370184
equal deleted inserted replaced
13237:493d61afa731 13238:a6cb18a25cbb
       
     1 (*<*)
     1 theory Sets = Main:
     2 theory Sets = Main:
     2 
     3 (*>*)
     3 section{*Sets, Functions and Relations*}
     4 section{*Sets, Functions and Relations*}
     4 
     5 
     5 subsection{*Set Notation*}
     6 subsection{*Set Notation*}
     6 
     7 
     7 term "A \<union> B"
     8 text{*
     8 term "A \<inter> B"
     9 \begin{center}
     9 term "A - B"
    10 \begin{tabular}{ccc}
    10 term "a \<in> A"
    11 @{term "A \<union> B"} & @{term "A \<inter> B"} & @{term "A - B"} \\
    11 term "b \<notin> A"
    12 @{term "a \<in> A"} & @{term "b \<notin> A"} \\
    12 term "{a,b}"
    13 @{term "{a,b}"} & @{text "{x. P x}"} \\
    13 term "{x. P x}"
    14 @{term "\<Union> M"} & @{text "\<Union>a \<in> A. F a"}
    14 term "{x+y+eps |x y. x < y}"
    15 \end{tabular}
    15 term "\<Union> M"
    16 \end{center}
    16 term "\<Union>a \<in> A. F a"
    17 *}
    17 
    18 
    18 subsection{*Functions*}
    19 subsection{*Some Functions*}
    19 
    20 
       
    21 text{*
       
    22 \begin{tabular}{l}
       
    23 @{thm id_def}\\
       
    24 @{thm o_def[no_vars]}\\
       
    25 @{thm image_def[no_vars]}\\
       
    26 @{thm vimage_def[no_vars]}
       
    27 \end{tabular}
       
    28 *}
       
    29 (*<*)
    20 thm id_def
    30 thm id_def
    21 thm o_assoc
    31 thm o_def[no_vars]
    22 thm image_Int
    32 thm image_def[no_vars]
    23 thm vimage_Compl
    33 thm vimage_def[no_vars]
       
    34 (*>*)
    24 
    35 
    25 
    36 subsection{*Some Relations*}
    26 subsection{*Relations*}
       
    27 
    37 
    28 thm Id_def
    38 thm Id_def
    29 thm converse_comp
    39 thm converse_def
    30 thm Image_def
    40 thm Image_def
    31 thm relpow.simps
    41 thm relpow.simps
    32 thm rtrancl_idemp
    42 thm rtrancl_idemp
    33 thm trancl_converse
    43 thm trancl_converse
    34 
    44 
   115 
   125 
   116 Show that the semantics for @{term EF} satisfies the following recursion equation:
   126 Show that the semantics for @{term EF} satisfies the following recursion equation:
   117 @{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
   127 @{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
   118 \end{exercise}
   128 \end{exercise}
   119 *}
   129 *}
   120 
   130 (*<*)
   121 end
   131 end
   122 
   132 (*>*)
   123