6 For subst.thy. |
6 For subst.thy. |
7 *) |
7 *) |
8 |
8 |
9 open Subst; |
9 open Subst; |
10 |
10 |
11 (***********) |
|
12 |
|
13 val subst_defs = [subst_def,comp_def,sdom_def]; |
|
14 |
|
15 val raw_subst_ss = simpset_of "UTLemmas" addsimps al_rews; |
|
16 |
|
17 local fun mk_thm s = prove_goalw Subst.thy subst_defs s |
|
18 (fn _ => [simp_tac raw_subst_ss 1]) |
|
19 in val subst_rews = map mk_thm |
|
20 ["Const(c) <| al = Const(c)", |
|
21 "Comb t u <| al = Comb (t <| al) (u <| al)", |
|
22 "[] <> bl = bl", |
|
23 "((a,b)#al) <> bl = (a,b <| bl) # (al <> bl)", |
|
24 "sdom([]) = {}", |
|
25 "sdom((a,b)#al) = (if Var(a)=b then (sdom al) Int Compl({a}) \ |
|
26 \ else (sdom al) Un {a})" |
|
27 ]; |
|
28 (* This rewrite isn't always desired *) |
|
29 val Var_subst = mk_thm "Var(x) <| al = assoc x (Var x) al"; |
|
30 end; |
|
31 |
|
32 val subst_ss = raw_subst_ss addsimps subst_rews |
|
33 delsimps [de_Morgan_conj, de_Morgan_disj]; |
|
34 |
11 |
35 (**** Substitutions ****) |
12 (**** Substitutions ****) |
36 |
13 |
37 goal Subst.thy "t <| [] = t"; |
14 goal Subst.thy "t <| [] = t"; |
38 by (uterm_ind_tac "t" 1); |
15 by (induct_tac "t" 1); |
39 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst]))); |
16 by (ALLGOALS Asm_simp_tac); |
40 qed "subst_Nil"; |
17 qed "subst_Nil"; |
41 |
18 |
|
19 Addsimps [subst_Nil]; |
|
20 |
42 goal Subst.thy "t <: u --> t <| s <: u <| s"; |
21 goal Subst.thy "t <: u --> t <| s <: u <| s"; |
43 by (uterm_ind_tac "u" 1); |
22 by (induct_tac "u" 1); |
44 by (ALLGOALS (asm_simp_tac subst_ss)); |
23 by (ALLGOALS Asm_simp_tac); |
45 val subst_mono = store_thm("subst_mono", result() RS mp); |
24 qed_spec_mp "subst_mono"; |
46 |
25 |
47 goal Subst.thy "~ (Var(v) <: t) --> t <| (v,t <| s)#s = t <| s"; |
26 goal Subst.thy "~ (Var(v) <: t) --> t <| (v,t <| s) # s = t <| s"; |
48 by (imp_excluded_middle_tac "t = Var(v)" 1); |
27 by (case_tac "t = Var(v)" 1); |
|
28 be rev_mp 2; |
49 by (res_inst_tac [("P", |
29 by (res_inst_tac [("P", |
50 "%x.~x=Var(v) --> ~(Var(v) <: x) --> x <| (v,t<|s)#s=x<|s")] |
30 "%x.~x=Var(v) --> ~(Var(v) <: x) --> x <| (v,t<|s)#s=x<|s")] |
51 uterm_induct 2); |
31 uterm.induct 2); |
52 by (ALLGOALS (simp_tac (subst_ss addsimps [Var_subst]))); |
32 by (ALLGOALS Asm_simp_tac); |
53 by (fast_tac HOL_cs 1); |
33 by (Blast_tac 1); |
54 val Var_not_occs = store_thm("Var_not_occs", result() RS mp); |
34 qed_spec_mp "Var_not_occs"; |
55 |
35 |
56 goal Subst.thy |
36 goal Subst.thy |
57 "(t <|r = t <|s) = (! v.v : vars_of(t) --> Var(v) <|r = Var(v) <|s)"; |
37 "(t <|r = t <|s) = (! v.v : vars_of(t) --> Var(v) <|r = Var(v) <|s)"; |
58 by (uterm_ind_tac "t" 1); |
38 by (induct_tac "t" 1); |
59 by (REPEAT (etac rev_mp 3)); |
39 by (ALLGOALS Asm_full_simp_tac); |
60 by (ALLGOALS (asm_simp_tac subst_ss)); |
40 by (ALLGOALS Blast_tac); |
61 by (ALLGOALS (fast_tac HOL_cs)); |
|
62 qed "agreement"; |
41 qed "agreement"; |
63 |
42 |
64 goal Subst.thy "~ v: vars_of(t) --> t <| (v,u)#s = t <| s"; |
43 goal Subst.thy "~ v: vars_of(t) --> t <| (v,u)#s = t <| s"; |
65 by(simp_tac(subst_ss addsimps [agreement,Var_subst] |
44 by(simp_tac (!simpset addsimps [agreement] |
66 setloop (split_tac [expand_if])) 1); |
45 setloop (split_tac [expand_if])) 1); |
67 val repl_invariance = store_thm("repl_invariance", result() RS mp); |
46 qed_spec_mp"repl_invariance"; |
68 |
47 |
69 val asms = goal Subst.thy |
48 val asms = goal Subst.thy |
70 "v : vars_of(t) --> w : vars_of(t <| (v,Var(w))#s)"; |
49 "v : vars_of(t) --> w : vars_of(t <| (v,Var(w))#s)"; |
71 by (uterm_ind_tac "t" 1); |
50 by (induct_tac "t" 1); |
72 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst]))); |
51 by (ALLGOALS Asm_simp_tac); |
73 val Var_in_subst = store_thm("Var_in_subst", result() RS mp); |
52 qed_spec_mp"Var_in_subst"; |
|
53 |
74 |
54 |
75 (**** Equality between Substitutions ****) |
55 (**** Equality between Substitutions ****) |
76 |
56 |
77 goalw Subst.thy [subst_eq_def] "r =s= s = (! t.t <| r = t <| s)"; |
57 goalw Subst.thy [subst_eq_def] "r =$= s = (! t.t <| r = t <| s)"; |
78 by (simp_tac subst_ss 1); |
58 by (Simp_tac 1); |
79 qed "subst_eq_iff"; |
59 qed "subst_eq_iff"; |
80 |
60 |
81 local fun mk_thm s = prove_goal Subst.thy s |
61 |
|
62 local fun prove s = prove_goal Subst.thy s |
82 (fn prems => [cut_facts_tac prems 1, |
63 (fn prems => [cut_facts_tac prems 1, |
83 REPEAT (etac rev_mp 1), |
64 REPEAT (etac rev_mp 1), |
84 simp_tac (subst_ss addsimps [subst_eq_iff]) 1]) |
65 simp_tac (!simpset addsimps [subst_eq_iff]) 1]) |
85 in |
66 in |
86 val subst_refl = mk_thm "r = s ==> r =s= s"; |
67 val subst_refl = prove "r =$= r"; |
87 val subst_sym = mk_thm "r =s= s ==> s =s= r"; |
68 val subst_sym = prove "r =$= s ==> s =$= r"; |
88 val subst_trans = mk_thm "[| q =s= r; r =s= s |] ==> q =s= s"; |
69 val subst_trans = prove "[| q =$= r; r =$= s |] ==> q =$= s"; |
89 end; |
70 end; |
90 |
71 |
|
72 |
|
73 AddIffs [subst_refl]; |
|
74 |
|
75 |
91 val eq::prems = goalw Subst.thy [subst_eq_def] |
76 val eq::prems = goalw Subst.thy [subst_eq_def] |
92 "[| r =s= s; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)"; |
77 "[| r =$= s; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)"; |
93 by (resolve_tac [eq RS spec RS subst] 1); |
78 by (resolve_tac [eq RS spec RS subst] 1); |
94 by (resolve_tac (prems RL [eq RS spec RS subst]) 1); |
79 by (resolve_tac (prems RL [eq RS spec RS subst]) 1); |
95 qed "subst_subst2"; |
80 qed "subst_subst2"; |
96 |
81 |
97 val ssubst_subst2 = subst_sym RS subst_subst2; |
82 val ssubst_subst2 = subst_sym RS subst_subst2; |
98 |
83 |
99 (**** Composition of Substitutions ****) |
84 (**** Composition of Substitutions ****) |
100 |
85 |
|
86 let fun prove s = |
|
87 prove_goalw Subst.thy [comp_def,sdom_def] s (fn _ => [Simp_tac 1]) |
|
88 in |
|
89 Addsimps |
|
90 ( |
|
91 map prove |
|
92 [ "[] <> bl = bl", |
|
93 "((a,b)#al) <> bl = (a,b <| bl) # (al <> bl)", |
|
94 "sdom([]) = {}", |
|
95 "sdom((a,b)#al) = (if Var(a)=b then (sdom al) - {a} else sdom al Un {a})"] |
|
96 ) |
|
97 end; |
|
98 |
|
99 |
101 goal Subst.thy "s <> [] = s"; |
100 goal Subst.thy "s <> [] = s"; |
102 by (alist_ind_tac "s" 1); |
101 by (alist_ind_tac "s" 1); |
103 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [subst_Nil]))); |
102 by (ALLGOALS Asm_simp_tac); |
104 qed "comp_Nil"; |
103 qed "comp_Nil"; |
105 |
104 |
|
105 Addsimps [comp_Nil]; |
|
106 |
|
107 goal Subst.thy "s =$= s <> []"; |
|
108 by (Simp_tac 1); |
|
109 qed "subst_comp_Nil"; |
|
110 |
106 goal Subst.thy "(t <| r <> s) = (t <| r <| s)"; |
111 goal Subst.thy "(t <| r <> s) = (t <| r <| s)"; |
107 by (uterm_ind_tac "t" 1); |
112 by (induct_tac "t" 1); |
108 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst]))); |
113 by (ALLGOALS Asm_simp_tac); |
109 by (alist_ind_tac "r" 1); |
114 by (alist_ind_tac "r" 1); |
110 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst,subst_Nil] |
115 by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if])))); |
111 setloop (split_tac [expand_if])))); |
|
112 qed "subst_comp"; |
116 qed "subst_comp"; |
113 |
117 |
114 goal Subst.thy "(q <> r) <> s =s= q <> (r <> s)"; |
118 Addsimps [subst_comp]; |
115 by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1); |
119 |
|
120 goal Subst.thy "(q <> r) <> s =$= q <> (r <> s)"; |
|
121 by (simp_tac (!simpset addsimps [subst_eq_iff]) 1); |
116 qed "comp_assoc"; |
122 qed "comp_assoc"; |
117 |
123 |
118 goal Subst.thy "(w,Var(w) <| s)#s =s= s"; |
124 goal Subst.thy "!!s. [| theta =$= theta1; sigma =$= sigma1|] ==> \ |
119 by (rtac (allI RS (subst_eq_iff RS iffD2)) 1); |
125 \ (theta <> sigma) =$= (theta1 <> sigma1)"; |
120 by (uterm_ind_tac "t" 1); |
126 by (asm_full_simp_tac (!simpset addsimps [subst_eq_def]) 1); |
121 by (REPEAT (etac rev_mp 3)); |
127 qed "subst_cong"; |
122 by (ALLGOALS (simp_tac (subst_ss addsimps[Var_subst] |
128 |
123 setloop (split_tac [expand_if])))); |
129 |
|
130 goal Subst.thy "(w, Var(w) <| s) # s =$= s"; |
|
131 by (simp_tac (!simpset addsimps [subst_eq_iff]) 1); |
|
132 by (rtac allI 1); |
|
133 by (induct_tac "t" 1); |
|
134 by (ALLGOALS (asm_full_simp_tac (!simpset setloop (split_tac [expand_if])))); |
124 qed "Cons_trivial"; |
135 qed "Cons_trivial"; |
125 |
136 |
126 val [prem] = goal Subst.thy "q <> r =s= s ==> t <| q <| r = t <| s"; |
137 |
127 by (simp_tac (subst_ss addsimps [prem RS (subst_eq_iff RS iffD1), |
138 goal Subst.thy "!!s. q <> r =$= s ==> t <| q <| r = t <| s"; |
128 subst_comp RS sym]) 1); |
139 by (asm_full_simp_tac (!simpset addsimps [subst_eq_iff]) 1); |
129 qed "comp_subst_subst"; |
140 qed "comp_subst_subst"; |
130 |
141 |
|
142 |
131 (**** Domain and range of Substitutions ****) |
143 (**** Domain and range of Substitutions ****) |
132 |
144 |
133 goal Subst.thy "(v : sdom(s)) = (~ Var(v) <| s = Var(v))"; |
145 goal Subst.thy "(v : sdom(s)) = (Var(v) <| s ~= Var(v))"; |
134 by (alist_ind_tac "s" 1); |
146 by (alist_ind_tac "s" 1); |
135 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_subst] |
147 by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac[expand_if])))); |
136 setloop (split_tac[expand_if])))); |
148 by (Blast_tac 1); |
137 by (fast_tac HOL_cs 1); |
|
138 qed "sdom_iff"; |
149 qed "sdom_iff"; |
|
150 |
139 |
151 |
140 goalw Subst.thy [srange_def] |
152 goalw Subst.thy [srange_def] |
141 "v : srange(s) = (? w.w : sdom(s) & v : vars_of(Var(w) <| s))"; |
153 "v : srange(s) = (? w.w : sdom(s) & v : vars_of(Var(w) <| s))"; |
142 by (fast_tac set_cs 1); |
154 by (Blast_tac 1); |
143 qed "srange_iff"; |
155 qed "srange_iff"; |
144 |
156 |
|
157 goalw Set.thy [empty_def] "(A = {}) = (ALL a.~ a:A)"; |
|
158 by (Blast_tac 1); |
|
159 qed "empty_iff_all_not"; |
|
160 |
145 goal Subst.thy "(t <| s = t) = (sdom(s) Int vars_of(t) = {})"; |
161 goal Subst.thy "(t <| s = t) = (sdom(s) Int vars_of(t) = {})"; |
146 by (uterm_ind_tac "t" 1); |
162 by (induct_tac "t" 1); |
147 by (REPEAT (etac rev_mp 3)); |
163 by (ALLGOALS |
148 by (ALLGOALS (simp_tac (subst_ss addsimps [sdom_iff,Var_subst]))); |
164 (asm_full_simp_tac (!simpset addsimps [empty_iff_all_not, sdom_iff]))); |
149 by (ALLGOALS (fast_tac set_cs)); |
165 by (ALLGOALS Blast_tac); |
150 qed "invariance"; |
166 qed "invariance"; |
151 |
167 |
152 goal Subst.thy "v : sdom(s) --> ~v : srange(s) --> ~v : vars_of(t <| s)"; |
168 goal Subst.thy "v : sdom(s) --> v : vars_of(t <| s) --> v : srange(s)"; |
153 by (uterm_ind_tac "t" 1); |
169 by (induct_tac "t" 1); |
154 by (imp_excluded_middle_tac "x : sdom(s)" 1); |
170 by (case_tac "a : sdom(s)" 1); |
155 by (ALLGOALS (asm_simp_tac (subst_ss addsimps [sdom_iff,srange_iff]))); |
171 by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [sdom_iff, srange_iff]))); |
156 by (ALLGOALS (fast_tac set_cs)); |
172 by (ALLGOALS Blast_tac); |
157 val Var_elim = store_thm("Var_elim", result() RS mp RS mp); |
173 qed_spec_mp "Var_in_srange"; |
158 |
174 |
159 val asms = goal Subst.thy |
175 goal Subst.thy |
160 "[| v : sdom(s); v : vars_of(t <| s) |] ==> v : srange(s)"; |
176 "!!v. [| v : sdom(s); v ~: srange(s) |] ==> v ~: vars_of(t <| s)"; |
161 by (REPEAT (ares_tac (asms @ [Var_elim RS swap RS classical]) 1)); |
177 by (blast_tac (!claset addIs [Var_in_srange]) 1); |
162 qed "Var_elim2"; |
178 qed "Var_elim"; |
163 |
179 |
164 goal Subst.thy "v : vars_of(t <| s) --> v : srange(s) | v : vars_of(t)"; |
180 goal Subst.thy "v : vars_of(t <| s) --> v : srange(s) | v : vars_of(t)"; |
165 by (uterm_ind_tac "t" 1); |
181 by (induct_tac "t" 1); |
166 by (REPEAT_SOME (etac rev_mp )); |
182 by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [sdom_iff,srange_iff]))); |
167 by (ALLGOALS (simp_tac (subst_ss addsimps [sdom_iff,srange_iff]))); |
183 by (Blast_tac 2); |
168 by (REPEAT (step_tac (set_cs addIs [vars_var_iff RS iffD1 RS sym]) 1)); |
184 by (REPEAT (step_tac (!claset addIs [vars_var_iff RS iffD1 RS sym]) 1)); |
169 by (etac notE 1); |
185 by (Auto_tac()); |
170 by (etac subst 1); |
186 qed_spec_mp "Var_intro"; |
171 by (ALLGOALS (fast_tac set_cs)); |
|
172 val Var_intro = store_thm("Var_intro", result() RS mp); |
|
173 |
187 |
174 goal Subst.thy |
188 goal Subst.thy |
175 "v : srange(s) --> (? w.w : sdom(s) & v : vars_of(Var(w) <| s))"; |
189 "v : srange(s) --> (? w.w : sdom(s) & v : vars_of(Var(w) <| s))"; |
176 by (simp_tac (subst_ss addsimps [srange_iff]) 1); |
190 by (simp_tac (!simpset addsimps [srange_iff]) 1); |
177 val srangeE = store_thm("srangeE", make_elim (result() RS mp)); |
191 qed_spec_mp "srangeD"; |
178 |
192 |
179 val asms = goal Subst.thy |
193 goal Subst.thy |
180 "sdom(s) Int srange(s) = {} = (! t.sdom(s) Int vars_of(t <| s) = {})"; |
194 "sdom(s) Int srange(s) = {} = (! t.sdom(s) Int vars_of(t <| s) = {})"; |
181 by (simp_tac subst_ss 1); |
195 by (simp_tac (!simpset addsimps [empty_iff_all_not]) 1); |
182 by (fast_tac (set_cs addIs [Var_elim2] addEs [srangeE]) 1); |
196 by (fast_tac (!claset addIs [Var_in_srange] addDs [srangeD]) 1); |
183 qed "dom_range_disjoint"; |
197 qed "dom_range_disjoint"; |
184 |
198 |
185 val asms = goal Subst.thy "~ u <| s = u --> (? x.x : sdom(s))"; |
199 goal Subst.thy "!!u. ~ u <| s = u ==> (? x. x : sdom(s))"; |
186 by (simp_tac (subst_ss addsimps [invariance]) 1); |
200 by (full_simp_tac (!simpset addsimps [empty_iff_all_not, invariance]) 1); |
187 by (fast_tac set_cs 1); |
201 by (Blast_tac 1); |
188 val subst_not_empty = store_thm("subst_not_empty", result() RS mp); |
202 qed "subst_not_empty"; |
|
203 |
|
204 |
|
205 goal Subst.thy "(M <| [(x, Var x)]) = M"; |
|
206 by (induct_tac "M" 1); |
|
207 by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if])))); |
|
208 qed "id_subst_lemma"; |
|
209 |
|
210 Addsimps [id_subst_lemma]; |