src/HOL/BNF_Cardinal_Arithmetic.thy
changeset 55811 aa1acc25126b
parent 55604 42e4e8c2e8dc
child 55851 3d40cf74726c
equal deleted inserted replaced
55810:63d63d854fae 55811:aa1acc25126b
    55 proof -
    55 proof -
    56   let ?F = "\<lambda>fg. (\<lambda>x. if x \<in> A then fst (fg x) else undefined,
    56   let ?F = "\<lambda>fg. (\<lambda>x. if x \<in> A then fst (fg x) else undefined,
    57                   \<lambda>x. if x \<in> A then snd (fg x) else undefined)"
    57                   \<lambda>x. if x \<in> A then snd (fg x) else undefined)"
    58   let ?G = "\<lambda>(f, g) x. if x \<in> A then (f x, g x) else undefined"
    58   let ?G = "\<lambda>(f, g) x. if x \<in> A then (f x, g x) else undefined"
    59   have "bij_betw ?F ?LHS ?RHS" unfolding bij_betw_def inj_on_def
    59   have "bij_betw ?F ?LHS ?RHS" unfolding bij_betw_def inj_on_def
    60   apply safe
    60   proof (intro conjI impI ballI equalityI subsetI)
    61      apply (simp add: Func_def fun_eq_iff)
    61     fix f g assume *: "f \<in> Func A (B \<times> C)" "g \<in> Func A (B \<times> C)" "?F f = ?F g"
    62      apply (metis (no_types) pair_collapse)
    62     show "f = g"
    63     apply (auto simp: Func_def fun_eq_iff)[2]
    63     proof
    64   proof -
    64       fix x from * have "fst (f x) = fst (g x) \<and> snd (f x) = snd (g x)"
    65     fix f g assume "f \<in> Func A B" "g \<in> Func A C"
    65         by (case_tac "x \<in> A") (auto simp: Func_def fun_eq_iff split: if_splits)
    66     thus "(f, g) \<in> ?F ` Func A (B \<times> C)"
    66       then show "f x = g x" by (subst (1 2) surjective_pairing) simp
    67       by (intro image_eqI[of _ _ "?G (f, g)"]) (auto simp: Func_def)
    67     qed
    68   qed
    68   next
       
    69     fix fg assume "fg \<in> Func A B \<times> Func A C"
       
    70     thus "fg \<in> ?F ` Func A (B \<times> C)"
       
    71       by (intro image_eqI[of _ _ "?G fg"]) (auto simp: Func_def)
       
    72   qed (auto simp: Func_def fun_eq_iff)
    69   thus ?thesis using card_of_ordIso by blast
    73   thus ?thesis using card_of_ordIso by blast
    70 qed
    74 qed
    71 
    75 
    72 
    76 
    73 subsection {* Zero *}
    77 subsection {* Zero *}
    87 abbreviation Cnotzero where
    91 abbreviation Cnotzero where
    88   "Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r"
    92   "Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r"
    89 
    93 
    90 (*helper*)
    94 (*helper*)
    91 lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}"
    95 lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}"
    92 by (metis Card_order_iff_ordIso_card_of czero_def)
    96   unfolding Card_order_iff_ordIso_card_of czero_def by force
    93 
    97 
    94 lemma czeroI:
    98 lemma czeroI:
    95   "\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero"
    99   "\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero"
    96 using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast
   100 using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast
    97 
   101 
   125 abbreviation Cfinite where
   129 abbreviation Cfinite where
   126   "Cfinite r \<equiv> cfinite r \<and> Card_order r"
   130   "Cfinite r \<equiv> cfinite r \<and> Card_order r"
   127 
   131 
   128 lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s"
   132 lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s"
   129   unfolding cfinite_def cinfinite_def
   133   unfolding cfinite_def cinfinite_def
   130   by (metis card_order_on_well_order_on finite_ordLess_infinite)
   134   by (blast intro: finite_ordLess_infinite card_order_on_well_order_on)
   131 
   135 
   132 lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
   136 lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
   133 
   137 
   134 lemma natLeq_cinfinite: "cinfinite natLeq"
   138 lemma natLeq_cinfinite: "cinfinite natLeq"
   135 unfolding cinfinite_def Field_natLeq by (metis infinite_UNIV_nat)
   139 unfolding cinfinite_def Field_natLeq by (rule infinite_UNIV_nat)
   136 
   140 
   137 lemma natLeq_ordLeq_cinfinite:
   141 lemma natLeq_ordLeq_cinfinite:
   138   assumes inf: "Cinfinite r"
   142   assumes inf: "Cinfinite r"
   139   shows "natLeq \<le>o r"
   143   shows "natLeq \<le>o r"
   140 proof -
   144 proof -
   141   from inf have "natLeq \<le>o |Field r|" by (metis cinfinite_def infinite_iff_natLeq_ordLeq)
   145   from inf have "natLeq \<le>o |Field r|" unfolding cinfinite_def
       
   146     using infinite_iff_natLeq_ordLeq by blast
   142   also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric)
   147   also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric)
   143   finally show ?thesis .
   148   finally show ?thesis .
   144 qed
   149 qed
   145 
   150 
   146 lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))"
   151 lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))"
   147 unfolding cinfinite_def by (metis czeroE finite.emptyI)
   152 unfolding cinfinite_def by (cases "Field r = {}") (auto dest: czeroE)
   148 
   153 
   149 lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r"
   154 lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r"
   150 by (metis cinfinite_not_czero)
   155 by (rule conjI[OF cinfinite_not_czero]) simp_all
   151 
   156 
   152 lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2"
   157 lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2"
   153 by (metis Card_order_ordIso2 card_of_mono2 card_of_ordLeq_infinite cinfinite_def ordIso_iff_ordLeq)
   158 using Card_order_ordIso2[of r1 r2] unfolding cinfinite_def ordIso_iff_ordLeq
       
   159 by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
   154 
   160 
   155 lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2"
   161 lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2"
   156 by (metis card_of_mono2 card_of_ordLeq_infinite cinfinite_def)
   162 unfolding cinfinite_def by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
   157 
   163 
   158 
   164 
   159 subsection {* Binary sum *}
   165 subsection {* Binary sum *}
   160 
   166 
   161 definition csum (infixr "+c" 65) where
   167 definition csum (infixr "+c" 65) where
   168   "Card_order (r1 +c r2)"
   174   "Card_order (r1 +c r2)"
   169 unfolding csum_def by (simp add: card_of_Card_order)
   175 unfolding csum_def by (simp add: card_of_Card_order)
   170 
   176 
   171 lemma csum_Cnotzero1:
   177 lemma csum_Cnotzero1:
   172   "Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)"
   178   "Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)"
   173 unfolding csum_def
   179 unfolding csum_def using Cnotzero_imp_not_empty[of r1] Plus_eq_empty_conv[of "Field r1" "Field r2"]
   174 by (metis Cnotzero_imp_not_empty Plus_eq_empty_conv card_of_Card_order card_of_ordIso_czero_iff_empty)
   180    card_of_ordIso_czero_iff_empty[of "Field r1 <+> Field r2"] by (auto intro: card_of_Card_order)
   175 
   181 
   176 lemma card_order_csum:
   182 lemma card_order_csum:
   177   assumes "card_order r1" "card_order r2"
   183   assumes "card_order r1" "card_order r2"
   178   shows "card_order (r1 +c r2)"
   184   shows "card_order (r1 +c r2)"
   179 proof -
   185 proof -
   185   "cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)"
   191   "cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)"
   186 unfolding cinfinite_def csum_def by (auto simp: Field_card_of)
   192 unfolding cinfinite_def csum_def by (auto simp: Field_card_of)
   187 
   193 
   188 lemma Cinfinite_csum1:
   194 lemma Cinfinite_csum1:
   189   "Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)"
   195   "Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)"
   190 unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff)
   196 unfolding cinfinite_def csum_def by (rule conjI[OF _ card_of_Card_order]) (auto simp: Field_card_of)
   191 
   197 
   192 lemma Cinfinite_csum:
   198 lemma Cinfinite_csum:
   193   "Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)"
   199   "Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)"
   194 unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff)
   200 unfolding cinfinite_def csum_def by (rule conjI[OF _ card_of_Card_order]) (auto simp: Field_card_of)
   195 
   201 
   196 lemma Cinfinite_csum_strong:
   202 lemma Cinfinite_csum_strong:
   197   "\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)"
   203   "\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)"
   198 by (metis Cinfinite_csum)
   204 by (erule Cinfinite_csum1)
   199 
   205 
   200 lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2"
   206 lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2"
   201 by (simp only: csum_def ordIso_Plus_cong)
   207 by (simp only: csum_def ordIso_Plus_cong)
   202 
   208 
   203 lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q"
   209 lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q"
   231   unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp
   237   unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp
   232 
   238 
   233 lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)"
   239 lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)"
   234 proof -
   240 proof -
   235   have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)"
   241   have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)"
   236     by (metis csum_assoc)
   242     by (rule csum_assoc)
   237   also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4"
   243   also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4"
   238     by (metis csum_assoc csum_cong2 ordIso_symmetric)
   244     by (intro csum_assoc csum_cong2 ordIso_symmetric)
   239   also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4"
   245   also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4"
   240     by (metis csum_com csum_cong1 csum_cong2)
   246     by (intro csum_com csum_cong1 csum_cong2)
   241   also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4"
   247   also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4"
   242     by (metis csum_assoc csum_cong2 ordIso_symmetric)
   248     by (intro csum_assoc csum_cong2 ordIso_symmetric)
   243   also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)"
   249   also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)"
   244     by (metis csum_assoc ordIso_symmetric)
   250     by (intro csum_assoc ordIso_symmetric)
   245   finally show ?thesis .
   251   finally show ?thesis .
   246 qed
   252 qed
   247 
   253 
   248 lemma Plus_csum: "|A <+> B| =o |A| +c |B|"
   254 lemma Plus_csum: "|A <+> B| =o |A| +c |B|"
   249 by (simp only: csum_def Field_card_of card_of_refl)
   255 by (simp only: csum_def Field_card_of card_of_refl)
   262 
   268 
   263 lemma Cfinite_cone: "Cfinite cone"
   269 lemma Cfinite_cone: "Cfinite cone"
   264   unfolding cfinite_def by (simp add: Card_order_cone)
   270   unfolding cfinite_def by (simp add: Card_order_cone)
   265 
   271 
   266 lemma cone_not_czero: "\<not> (cone =o czero)"
   272 lemma cone_not_czero: "\<not> (cone =o czero)"
   267 unfolding czero_def cone_def by (metis empty_not_insert card_of_empty3[of "{()}"] ordIso_iff_ordLeq)
   273 unfolding czero_def cone_def ordIso_iff_ordLeq using card_of_empty3 empty_not_insert by blast
   268 
   274 
   269 lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r"
   275 lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r"
   270 unfolding cone_def by (metis Card_order_singl_ordLeq czeroI)
   276 unfolding cone_def by (rule Card_order_singl_ordLeq) (auto intro: czeroI)
   271 
   277 
   272 
   278 
   273 subsection {* Two *}
   279 subsection {* Two *}
   274 
   280 
   275 definition ctwo where
   281 definition ctwo where
   278 lemma Card_order_ctwo: "Card_order ctwo"
   284 lemma Card_order_ctwo: "Card_order ctwo"
   279 unfolding ctwo_def by (rule card_of_Card_order)
   285 unfolding ctwo_def by (rule card_of_Card_order)
   280 
   286 
   281 lemma ctwo_not_czero: "\<not> (ctwo =o czero)"
   287 lemma ctwo_not_czero: "\<not> (ctwo =o czero)"
   282 using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq
   288 using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq
   283 unfolding czero_def ctwo_def by (metis UNIV_not_empty)
   289 unfolding czero_def ctwo_def using UNIV_not_empty by auto
   284 
   290 
   285 lemma ctwo_Cnotzero: "Cnotzero ctwo"
   291 lemma ctwo_Cnotzero: "Cnotzero ctwo"
   286 by (simp add: ctwo_not_czero Card_order_ctwo)
   292 by (simp add: ctwo_not_czero Card_order_ctwo)
   287 
   293 
   288 
   294 
   328 
   334 
   329 lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2"
   335 lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2"
   330 by (simp only: cprod_def ordLeq_Times_mono2)
   336 by (simp only: cprod_def ordLeq_Times_mono2)
   331 
   337 
   332 lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2"
   338 lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2"
   333 unfolding cprod_def by (metis Card_order_Times2 czeroI)
   339 unfolding cprod_def by (rule Card_order_Times2) (auto intro: czeroI)
   334 
   340 
   335 lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
   341 lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
   336 by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product)
   342 by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product)
   337 
   343 
   338 lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
   344 lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
   339 by (metis cinfinite_mono ordLeq_cprod2)
   345 by (rule cinfinite_mono) (auto intro: ordLeq_cprod2)
   340 
   346 
   341 lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)"
   347 lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)"
   342 by (blast intro: cinfinite_cprod2 Card_order_cprod)
   348 by (blast intro: cinfinite_cprod2 Card_order_cprod)
   343 
   349 
   344 lemma cprod_com: "p1 *c p2 =o p2 *c p1"
   350 lemma cprod_com: "p1 *c p2 =o p2 *c p1"
   362 
   368 
   363 lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)"
   369 lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)"
   364 unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric)
   370 unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric)
   365 
   371 
   366 lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2"
   372 lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2"
   367 unfolding csum_def by (metis Card_order_Plus_infinite cinfinite_def cinfinite_mono)
   373 unfolding csum_def by (rule conjunct2[OF Card_order_Plus_infinite])
       
   374   (auto simp: cinfinite_def dest: cinfinite_mono)
   368 
   375 
   369 lemma csum_absorb1':
   376 lemma csum_absorb1':
   370   assumes card: "Card_order r2"
   377   assumes card: "Card_order r2"
   371   and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2"
   378   and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2"
   372   shows "r2 +c r1 =o r2"
   379   shows "r2 +c r1 =o r2"
   388   assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
   395   assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
   389   and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
   396   and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
   390   shows "p1 ^c p2 \<le>o r1 ^c r2"
   397   shows "p1 ^c p2 \<le>o r1 ^c r2"
   391 proof(cases "Field p1 = {}")
   398 proof(cases "Field p1 = {}")
   392   case True
   399   case True
   393   hence "|Field |Func (Field p2) (Field p1)|| \<le>o cone"
   400   hence "Field p2 \<noteq> {} \<Longrightarrow> Func (Field p2) {} = {}" unfolding Func_is_emp by simp
       
   401   with True have "|Field |Func (Field p2) (Field p1)|| \<le>o cone"
   394     unfolding cone_def Field_card_of
   402     unfolding cone_def Field_card_of
   395     by (cases "Field p2 = {}", auto intro: card_of_ordLeqI2 simp: Func_empty)
   403     by (cases "Field p2 = {}", auto intro: surj_imp_ordLeq simp: Func_empty)
   396        (metis Func_is_emp card_of_empty ex_in_conv)
       
   397   hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def)
   404   hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def)
   398   hence "p1 ^c p2 \<le>o cone" unfolding cexp_def .
   405   hence "p1 ^c p2 \<le>o cone" unfolding cexp_def .
   399   thus ?thesis
   406   thus ?thesis
   400   proof (cases "Field p2 = {}")
   407   proof (cases "Field p2 = {}")
   401     case True
   408     case True
   427 
   434 
   428 lemma cexp_mono:
   435 lemma cexp_mono:
   429   assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
   436   assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
   430   and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
   437   and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
   431   shows "p1 ^c p2 \<le>o r1 ^c r2"
   438   shows "p1 ^c p2 \<le>o r1 ^c r2"
   432   by (metis (full_types) "1" "2" card cexp_mono' czeroE czeroI n)
   439   by (rule cexp_mono'[OF 1 2 czeroE[OF n[OF czeroI[OF card]]]])
   433 
   440 
   434 lemma cexp_mono1:
   441 lemma cexp_mono1:
   435   assumes 1: "p1 \<le>o r1" and q: "Card_order q"
   442   assumes 1: "p1 \<le>o r1" and q: "Card_order q"
   436   shows "p1 ^c q \<le>o r1 ^c q"
   443   shows "p1 ^c q \<le>o r1 ^c q"
   437 using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q)
   444 using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q)
   449 using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto
   456 using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto
   450 
   457 
   451 lemma cexp_mono2_Cnotzero:
   458 lemma cexp_mono2_Cnotzero:
   452   assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2"
   459   assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2"
   453   shows "q ^c p2 \<le>o q ^c r2"
   460   shows "q ^c p2 \<le>o q ^c r2"
   454 by (metis assms cexp_mono2' czeroI)
   461 using assms(3) czeroI by (blast intro: cexp_mono2'[OF assms(1,2)])
   455 
   462 
   456 lemma cexp_cong:
   463 lemma cexp_cong:
   457   assumes 1: "p1 =o r1" and 2: "p2 =o r2"
   464   assumes 1: "p1 =o r1" and 2: "p2 =o r2"
   458   and Cr: "Card_order r2"
   465   and Cr: "Card_order r2"
   459   and Cp: "Card_order p2"
   466   and Cp: "Card_order p2"
   464   hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto
   471   hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto
   465   have r: "p2 =o czero \<Longrightarrow> r2 =o czero"
   472   have r: "p2 =o czero \<Longrightarrow> r2 =o czero"
   466     and p: "r2 =o czero \<Longrightarrow> p2 =o czero"
   473     and p: "r2 =o czero \<Longrightarrow> p2 =o czero"
   467      using 0 Cr Cp czeroE czeroI by auto
   474      using 0 Cr Cp czeroE czeroI by auto
   468   show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq
   475   show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq
   469     using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by metis
   476     using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by blast
   470 qed
   477 qed
   471 
   478 
   472 lemma cexp_cong1:
   479 lemma cexp_cong1:
   473   assumes 1: "p1 =o r1" and q: "Card_order q"
   480   assumes 1: "p1 =o r1" and q: "Card_order q"
   474   shows "p1 ^c q =o r1 ^c q"
   481   shows "p1 ^c q =o r1 ^c q"
   573     apply (rule assms(2))
   580     apply (rule assms(2))
   574   done
   581   done
   575 qed
   582 qed
   576 
   583 
   577 lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)"
   584 lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)"
   578 by (metis assms cinfinite_mono ordLeq_cexp2)
   585 by (rule cinfinite_mono[OF ordLeq_cexp2]) simp_all
   579 
   586 
   580 lemma Cinfinite_cexp:
   587 lemma Cinfinite_cexp:
   581   "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)"
   588   "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)"
   582 by (simp add: cinfinite_cexp Card_order_cexp)
   589 by (simp add: cinfinite_cexp Card_order_cexp)
   583 
   590 
   584 lemma ctwo_ordLess_natLeq: "ctwo <o natLeq"
   591 lemma ctwo_ordLess_natLeq: "ctwo <o natLeq"
   585 unfolding ctwo_def using finite_UNIV natLeq_cinfinite natLeq_Card_order
   592 unfolding ctwo_def using finite_UNIV natLeq_cinfinite natLeq_Card_order
   586 by (intro Cfinite_ordLess_Cinfinite) (auto simp: cfinite_def card_of_Card_order)
   593 by (intro Cfinite_ordLess_Cinfinite) (auto simp: cfinite_def card_of_Card_order)
   587 
   594 
   588 lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r"
   595 lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r"
   589 by (metis ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite ordLess_ordLeq_trans)
   596 by (rule ordLess_ordLeq_trans[OF ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite])
   590 
   597 
   591 lemma ctwo_ordLeq_Cinfinite:
   598 lemma ctwo_ordLeq_Cinfinite:
   592   assumes "Cinfinite r"
   599   assumes "Cinfinite r"
   593   shows "ctwo \<le>o r"
   600   shows "ctwo \<le>o r"
   594 by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]])
   601 by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]])
   661   shows "s ^c t \<le>o ctwo ^c t"
   668   shows "s ^c t \<le>o ctwo ^c t"
   662 proof (cases "s \<le>o ctwo")
   669 proof (cases "s \<le>o ctwo")
   663   case True thus ?thesis using t by (blast intro: cexp_mono1)
   670   case True thus ?thesis using t by (blast intro: cexp_mono1)
   664 next
   671 next
   665   case False
   672   case False
   666   hence "ctwo \<le>o s" by (metis card_order_on_well_order_on ctwo_Cnotzero ordLeq_total s)
   673   hence "ctwo \<le>o s" using ordLeq_total[of s ctwo] Card_order_ctwo s
   667   hence "Cnotzero s" by (metis Cnotzero_mono ctwo_Cnotzero s)
   674     by (auto intro: card_order_on_well_order_on)
   668   hence st: "Cnotzero (s *c t)" by (metis Cinfinite_cprod2 cinfinite_not_czero t)
   675   hence "Cnotzero s" using Cnotzero_mono[OF ctwo_Cnotzero] s by blast
       
   676   hence st: "Cnotzero (s *c t)" by (intro Cinfinite_Cnotzero[OF Cinfinite_cprod2]) (auto simp: t)
   669   have "s ^c t \<le>o (ctwo ^c s) ^c t"
   677   have "s ^c t \<le>o (ctwo ^c s) ^c t"
   670     using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp])
   678     using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp])
   671   also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)"
   679   also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)"
   672     by (blast intro: Card_order_ctwo cexp_cprod)
   680     by (blast intro: Card_order_ctwo cexp_cprod)
   673   also have "ctwo ^c (s *c t) \<le>o ctwo ^c t"
   681   also have "ctwo ^c (s *c t) \<le>o ctwo ^c t"