src/HOL/Word/Word.thy
changeset 71951 ac6f9738c200
parent 71950 c9251bc7da4e
child 71952 2efc5b8c7456
equal deleted inserted replaced
71950:c9251bc7da4e 71951:ac6f9738c200
   282 lemma power_transfer_word [transfer_rule]:
   282 lemma power_transfer_word [transfer_rule]:
   283   \<open>(pcr_word ===> (=) ===> pcr_word) (^) (^)\<close>
   283   \<open>(pcr_word ===> (=) ===> pcr_word) (^) (^)\<close>
   284   by transfer_prover
   284   by transfer_prover
   285 
   285 
   286 end
   286 end
       
   287 
   287 
   288 
   288 
   289 
   289 text \<open>Legacy theorems:\<close>
   290 text \<open>Legacy theorems:\<close>
   290 
   291 
   291 lemma word_arith_wis [code]:
   292 lemma word_arith_wis [code]:
   404     transfer_prover
   405     transfer_prover
   405 qed
   406 qed
   406 
   407 
   407 end
   408 end
   408 
   409 
       
   410 instance word :: (len) semiring_modulo
       
   411 proof
       
   412   show "a div b * b + a mod b = a" for a b :: "'a word"
       
   413   proof transfer
       
   414     fix k l :: int
       
   415     define r :: int where "r = 2 ^ LENGTH('a)"
       
   416     then have r: "take_bit LENGTH('a) k = k mod r" for k
       
   417       by (simp add: take_bit_eq_mod)
       
   418     have "k mod r = ((k mod r) div (l mod r) * (l mod r)
       
   419       + (k mod r) mod (l mod r)) mod r"
       
   420       by (simp add: div_mult_mod_eq)
       
   421     also have "... = (((k mod r) div (l mod r) * (l mod r)) mod r
       
   422       + (k mod r) mod (l mod r)) mod r"
       
   423       by (simp add: mod_add_left_eq)
       
   424     also have "... = (((k mod r) div (l mod r) * l) mod r
       
   425       + (k mod r) mod (l mod r)) mod r"
       
   426       by (simp add: mod_mult_right_eq)
       
   427     finally have "k mod r = ((k mod r) div (l mod r) * l
       
   428       + (k mod r) mod (l mod r)) mod r"
       
   429       by (simp add: mod_simps)
       
   430     with r show "take_bit LENGTH('a) (take_bit LENGTH('a) k div take_bit LENGTH('a) l * l
       
   431       + take_bit LENGTH('a) k mod take_bit LENGTH('a) l) = take_bit LENGTH('a) k"
       
   432       by simp
       
   433   qed
       
   434 qed
       
   435 
       
   436 instance word :: (len) semiring_parity
       
   437 proof
       
   438   show "\<not> 2 dvd (1::'a word)"
       
   439     by transfer simp
       
   440   show even_iff_mod_2_eq_0: "2 dvd a \<longleftrightarrow> a mod 2 = 0"
       
   441     for a :: "'a word"
       
   442     by transfer (simp_all add: mod_2_eq_odd take_bit_Suc)
       
   443   show "\<not> 2 dvd a \<longleftrightarrow> a mod 2 = 1"
       
   444     for a :: "'a word"
       
   445     by transfer (simp_all add: mod_2_eq_odd take_bit_Suc)
       
   446 qed
       
   447 
   409 
   448 
   410 subsection \<open>Ordering\<close>
   449 subsection \<open>Ordering\<close>
   411 
   450 
   412 instantiation word :: (len0) linorder
   451 instantiation word :: (len0) linorder
   413 begin
   452 begin
   431 
   470 
   432 lemma word_less_def [code]:
   471 lemma word_less_def [code]:
   433   "a < b \<longleftrightarrow> uint a < uint b"
   472   "a < b \<longleftrightarrow> uint a < uint b"
   434   by transfer rule
   473   by transfer rule
   435 
   474 
       
   475 lemma word_greater_zero_iff:
       
   476   \<open>a > 0 \<longleftrightarrow> a \<noteq> 0\<close> for a :: \<open>'a::len0 word\<close>
       
   477   by transfer (simp add: less_le)
       
   478 
       
   479 lemma of_nat_word_eq_iff:
       
   480   \<open>of_nat m = (of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m = take_bit LENGTH('a) n\<close>
       
   481   by transfer (simp add: take_bit_of_nat)
       
   482 
       
   483 lemma of_nat_word_less_eq_iff:
       
   484   \<open>of_nat m \<le> (of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m \<le> take_bit LENGTH('a) n\<close>
       
   485   by transfer (simp add: take_bit_of_nat)
       
   486 
       
   487 lemma of_nat_word_less_iff:
       
   488   \<open>of_nat m < (of_nat n :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) m < take_bit LENGTH('a) n\<close>
       
   489   by transfer (simp add: take_bit_of_nat)
       
   490 
       
   491 lemma of_nat_word_eq_0_iff:
       
   492   \<open>of_nat n = (0 :: 'a::len word) \<longleftrightarrow> 2 ^ LENGTH('a) dvd n\<close>
       
   493   using of_nat_word_eq_iff [where ?'a = 'a, of n 0] by (simp add: take_bit_eq_0_iff)
       
   494 
       
   495 lemma of_int_word_eq_iff:
       
   496   \<open>of_int k = (of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k = take_bit LENGTH('a) l\<close>
       
   497   by transfer rule
       
   498 
       
   499 lemma of_int_word_less_eq_iff:
       
   500   \<open>of_int k \<le> (of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k \<le> take_bit LENGTH('a) l\<close>
       
   501   by transfer rule
       
   502 
       
   503 lemma of_int_word_less_iff:
       
   504   \<open>of_int k < (of_int l :: 'a::len word) \<longleftrightarrow> take_bit LENGTH('a) k < take_bit LENGTH('a) l\<close>
       
   505   by transfer rule
       
   506 
       
   507 lemma of_int_word_eq_0_iff:
       
   508   \<open>of_int k = (0 :: 'a::len word) \<longleftrightarrow> 2 ^ LENGTH('a) dvd k\<close>
       
   509   using of_int_word_eq_iff [where ?'a = 'a, of k 0] by (simp add: take_bit_eq_0_iff)
       
   510 
   436 definition word_sle :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool"  ("(_/ <=s _)" [50, 51] 50)
   511 definition word_sle :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool"  ("(_/ <=s _)" [50, 51] 50)
   437   where "a <=s b \<longleftrightarrow> sint a \<le> sint b"
   512   where "a <=s b \<longleftrightarrow> sint a \<le> sint b"
   438 
   513 
   439 definition word_sless :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool"  ("(_/ <s _)" [50, 51] 50)
   514 definition word_sless :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool"  ("(_/ <s _)" [50, 51] 50)
   440   where "x <s y \<longleftrightarrow> x <=s y \<and> x \<noteq> y"
   515   where "x <s y \<longleftrightarrow> x <=s y \<and> x \<noteq> y"
   441 
   516 
   442 
   517 
   443 subsection \<open>Bit-wise operations\<close>
   518 subsection \<open>Bit-wise operations\<close>
       
   519 
       
   520 lemma word_bit_induct [case_names zero even odd]:
       
   521   \<open>P a\<close> if word_zero: \<open>P 0\<close>
       
   522     and word_even: \<open>\<And>a. P a \<Longrightarrow> 0 < a \<Longrightarrow> a < 2 ^ (LENGTH('a) - 1) \<Longrightarrow> P (2 * a)\<close>
       
   523     and word_odd: \<open>\<And>a. P a \<Longrightarrow> a < 2 ^ (LENGTH('a) - 1) \<Longrightarrow> P (1 + 2 * a)\<close>
       
   524   for P and a :: \<open>'a::len word\<close>
       
   525 proof -
       
   526   define m :: nat where \<open>m = LENGTH('a) - 1\<close>
       
   527   then have l: \<open>LENGTH('a) = Suc m\<close>
       
   528     by simp
       
   529   define n :: nat where \<open>n = unat a\<close>
       
   530   then have \<open>n < 2 ^ LENGTH('a)\<close>
       
   531     by (unfold unat_def) (transfer, simp add: take_bit_eq_mod)
       
   532   then have \<open>n < 2 * 2 ^ m\<close>
       
   533     by (simp add: l)
       
   534   then have \<open>P (of_nat n)\<close>
       
   535   proof (induction n rule: nat_bit_induct)
       
   536     case zero
       
   537     show ?case
       
   538       by simp (rule word_zero)
       
   539   next
       
   540     case (even n)
       
   541     then have \<open>n < 2 ^ m\<close>
       
   542       by simp
       
   543     with even.IH have \<open>P (of_nat n)\<close>
       
   544       by simp
       
   545     moreover from \<open>n < 2 ^ m\<close> even.hyps have \<open>0 < (of_nat n :: 'a word)\<close>
       
   546       by (auto simp add: word_greater_zero_iff of_nat_word_eq_0_iff l)
       
   547     moreover from \<open>n < 2 ^ m\<close> have \<open>(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\<close>
       
   548       using of_nat_word_less_iff [where ?'a = 'a, of n \<open>2 ^ m\<close>]
       
   549       by (cases \<open>m = 0\<close>) (simp_all add: not_less take_bit_eq_self ac_simps l)
       
   550     ultimately have \<open>P (2 * of_nat n)\<close>
       
   551       by (rule word_even)
       
   552     then show ?case
       
   553       by simp
       
   554   next
       
   555     case (odd n)
       
   556     then have \<open>Suc n \<le> 2 ^ m\<close>
       
   557       by simp
       
   558     with odd.IH have \<open>P (of_nat n)\<close>
       
   559       by simp
       
   560     moreover from \<open>Suc n \<le> 2 ^ m\<close> have \<open>(of_nat n :: 'a word) < 2 ^ (LENGTH('a) - 1)\<close>
       
   561       using of_nat_word_less_iff [where ?'a = 'a, of n \<open>2 ^ m\<close>]
       
   562       by (cases \<open>m = 0\<close>) (simp_all add: not_less take_bit_eq_self ac_simps l)
       
   563     ultimately have \<open>P (1 + 2 * of_nat n)\<close>
       
   564       by (rule word_odd)
       
   565     then show ?case
       
   566       by simp
       
   567   qed
       
   568   moreover have \<open>of_nat (nat (uint a)) = a\<close>
       
   569     by transfer simp
       
   570   ultimately show ?thesis
       
   571     by (simp add: n_def unat_def)
       
   572 qed
       
   573 
       
   574 lemma bit_word_half_eq:
       
   575   \<open>(of_bool b + a * 2) div 2 = a\<close>
       
   576     if \<open>a < 2 ^ (LENGTH('a) - Suc 0)\<close>
       
   577     for a :: \<open>'a::len word\<close>
       
   578 proof (cases \<open>2 \<le> LENGTH('a::len)\<close>)
       
   579   case False
       
   580   have \<open>of_bool (odd k) < (1 :: int) \<longleftrightarrow> even k\<close> for k :: int
       
   581     by auto
       
   582   with False that show ?thesis
       
   583     by transfer (simp add: eq_iff)
       
   584 next
       
   585   case True
       
   586   obtain n where length: \<open>LENGTH('a) = Suc n\<close>
       
   587     by (cases \<open>LENGTH('a)\<close>) simp_all
       
   588   show ?thesis proof (cases b)
       
   589     case False
       
   590     moreover have \<open>a * 2 div 2 = a\<close>
       
   591     using that proof transfer
       
   592       fix k :: int
       
   593       from length have \<open>k * 2 mod 2 ^ LENGTH('a) = (k mod 2 ^ n) * 2\<close>
       
   594         by simp
       
   595       moreover assume \<open>take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\<close>
       
   596       with \<open>LENGTH('a) = Suc n\<close>
       
   597       have \<open>k mod 2 ^ LENGTH('a) = k mod 2 ^ n\<close>
       
   598         by (simp add: take_bit_eq_mod divmod_digit_0)
       
   599       ultimately have \<open>take_bit LENGTH('a) (k * 2) = take_bit LENGTH('a) k * 2\<close>
       
   600         by (simp add: take_bit_eq_mod)
       
   601       with True show \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (k * 2) div take_bit LENGTH('a) 2)
       
   602         = take_bit LENGTH('a) k\<close>
       
   603         by simp
       
   604     qed
       
   605     ultimately show ?thesis
       
   606       by simp
       
   607   next
       
   608     case True
       
   609     moreover have \<open>(1 + a * 2) div 2 = a\<close>
       
   610     using that proof transfer
       
   611       fix k :: int
       
   612       from length have \<open>(1 + k * 2) mod 2 ^ LENGTH('a) = 1 + (k mod 2 ^ n) * 2\<close>
       
   613         using pos_zmod_mult_2 [of \<open>2 ^ n\<close> k] by (simp add: ac_simps)
       
   614       moreover assume \<open>take_bit LENGTH('a) k < take_bit LENGTH('a) (2 ^ (LENGTH('a) - Suc 0))\<close>
       
   615       with \<open>LENGTH('a) = Suc n\<close>
       
   616       have \<open>k mod 2 ^ LENGTH('a) = k mod 2 ^ n\<close>
       
   617         by (simp add: take_bit_eq_mod divmod_digit_0)
       
   618       ultimately have \<open>take_bit LENGTH('a) (1 + k * 2) = 1 + take_bit LENGTH('a) k * 2\<close>
       
   619         by (simp add: take_bit_eq_mod)
       
   620       with True show \<open>take_bit LENGTH('a) (take_bit LENGTH('a) (1 + k * 2) div take_bit LENGTH('a) 2)
       
   621         = take_bit LENGTH('a) k\<close>
       
   622         by (auto simp add: take_bit_Suc)
       
   623     qed
       
   624     ultimately show ?thesis
       
   625       by simp
       
   626   qed
       
   627 qed
       
   628 
       
   629 lemma even_mult_exp_div_word_iff:
       
   630   \<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> \<not> (
       
   631     m \<le> n \<and>
       
   632     n < LENGTH('a) \<and> odd (a div 2 ^ (n - m)))\<close> for a :: \<open>'a::len word\<close>
       
   633   by transfer
       
   634     (auto simp flip: drop_bit_eq_div simp add: even_drop_bit_iff_not_bit bit_take_bit_iff,
       
   635       simp_all flip: push_bit_eq_mult add: bit_push_bit_iff_int)
       
   636 
       
   637 instance word :: (len) semiring_bits
       
   638 proof
       
   639   show \<open>P a\<close> if stable: \<open>\<And>a. a div 2 = a \<Longrightarrow> P a\<close>
       
   640     and rec: \<open>\<And>a b. P a \<Longrightarrow> (of_bool b + 2 * a) div 2 = a \<Longrightarrow> P (of_bool b + 2 * a)\<close>
       
   641   for P and a :: \<open>'a word\<close>
       
   642   proof (induction a rule: word_bit_induct)
       
   643     case zero
       
   644     have \<open>0 div 2 = (0::'a word)\<close>
       
   645       by transfer simp
       
   646     with stable [of 0] show ?case
       
   647       by simp
       
   648   next
       
   649     case (even a)
       
   650     with rec [of a False] show ?case
       
   651       using bit_word_half_eq [of a False] by (simp add: ac_simps)
       
   652   next
       
   653     case (odd a)
       
   654     with rec [of a True] show ?case
       
   655       using bit_word_half_eq [of a True] by (simp add: ac_simps)
       
   656   qed
       
   657   show \<open>0 div a = 0\<close>
       
   658     for a :: \<open>'a word\<close>
       
   659     by transfer simp
       
   660   show \<open>a div 1 = a\<close>
       
   661     for a :: \<open>'a word\<close>
       
   662     by transfer simp
       
   663   show \<open>a mod b div b = 0\<close>
       
   664     for a b :: \<open>'a word\<close>
       
   665     apply transfer
       
   666     apply (simp add: take_bit_eq_mod)
       
   667     apply (subst (3) mod_pos_pos_trivial [of _ \<open>2 ^ LENGTH('a)\<close>])
       
   668       apply simp_all
       
   669      apply (metis le_less mod_by_0 pos_mod_conj zero_less_numeral zero_less_power)
       
   670     using pos_mod_bound [of \<open>2 ^ LENGTH('a)\<close>] apply simp
       
   671   proof -
       
   672     fix aa :: int and ba :: int
       
   673     have f1: "\<And>i n. (i::int) mod 2 ^ n = 0 \<or> 0 < i mod 2 ^ n"
       
   674       by (metis le_less take_bit_eq_mod take_bit_nonnegative)
       
   675     have "(0::int) < 2 ^ len_of (TYPE('a)::'a itself) \<and> ba mod 2 ^ len_of (TYPE('a)::'a itself) \<noteq> 0 \<or> aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)"
       
   676       by (metis (no_types) mod_by_0 unique_euclidean_semiring_numeral_class.pos_mod_bound zero_less_numeral zero_less_power)
       
   677     then show "aa mod 2 ^ len_of (TYPE('a)::'a itself) mod (ba mod 2 ^ len_of (TYPE('a)::'a itself)) < 2 ^ len_of (TYPE('a)::'a itself)"
       
   678       using f1 by (meson le_less less_le_trans unique_euclidean_semiring_numeral_class.pos_mod_bound)
       
   679   qed
       
   680   show \<open>(1 + a) div 2 = a div 2\<close>
       
   681     if \<open>even a\<close>
       
   682     for a :: \<open>'a word\<close>
       
   683     using that by transfer (auto dest: le_Suc_ex simp add: take_bit_Suc)
       
   684   show \<open>(2 :: 'a word) ^ m div 2 ^ n = of_bool ((2 :: 'a word) ^ m \<noteq> 0 \<and> n \<le> m) * 2 ^ (m - n)\<close>
       
   685     for m n :: nat
       
   686     by transfer (simp, simp add: exp_div_exp_eq)
       
   687   show "a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)"
       
   688     for a :: "'a word" and m n :: nat
       
   689     apply transfer
       
   690     apply (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: drop_bit_eq_div)
       
   691     apply (simp add: drop_bit_take_bit)
       
   692     done
       
   693   show "a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n"
       
   694     for a :: "'a word" and m n :: nat
       
   695     by transfer (auto simp flip: take_bit_eq_mod simp add: ac_simps)
       
   696   show \<open>a * 2 ^ m mod 2 ^ n = a mod 2 ^ (n - m) * 2 ^ m\<close>
       
   697     if \<open>m \<le> n\<close> for a :: "'a word" and m n :: nat
       
   698     using that apply transfer
       
   699     apply (auto simp flip: take_bit_eq_mod)
       
   700            apply (auto simp flip: push_bit_eq_mult simp add: push_bit_take_bit split: split_min_lin)
       
   701     done
       
   702   show \<open>a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\<close>
       
   703     for a :: "'a word" and m n :: nat
       
   704     by transfer (auto simp add: not_less take_bit_drop_bit ac_simps simp flip: take_bit_eq_mod drop_bit_eq_div split: split_min_lin)
       
   705   show \<open>even ((2 ^ m - 1) div (2::'a word) ^ n) \<longleftrightarrow> 2 ^ n = (0::'a word) \<or> m \<le> n\<close>
       
   706     for m n :: nat
       
   707     by transfer (auto simp add: take_bit_of_mask even_mask_div_iff)
       
   708   show \<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::'a word) ^ n = 0 \<or> m \<le> n \<and> even (a div 2 ^ (n - m))\<close>
       
   709     for a :: \<open>'a word\<close> and m n :: nat
       
   710   proof transfer
       
   711     show \<open>even (take_bit LENGTH('a) (k * 2 ^ m) div take_bit LENGTH('a) (2 ^ n)) \<longleftrightarrow>
       
   712       n < m
       
   713       \<or> take_bit LENGTH('a) ((2::int) ^ n) = take_bit LENGTH('a) 0
       
   714       \<or> (m \<le> n \<and> even (take_bit LENGTH('a) k div take_bit LENGTH('a) (2 ^ (n - m))))\<close>
       
   715     for m n :: nat and k l :: int
       
   716       by (auto simp flip: take_bit_eq_mod drop_bit_eq_div push_bit_eq_mult
       
   717         simp add: div_push_bit_of_1_eq_drop_bit drop_bit_take_bit drop_bit_push_bit_int [of n m])
       
   718   qed
       
   719 qed
       
   720 
       
   721 context
       
   722   includes lifting_syntax
       
   723 begin
       
   724 
       
   725 lemma transfer_rule_bit_word [transfer_rule]:
       
   726   \<open>((pcr_word :: int \<Rightarrow> 'a::len word \<Rightarrow> bool) ===> (=)) (\<lambda>k n. n < LENGTH('a) \<and> bit k n) bit\<close>
       
   727 proof -
       
   728   let ?t = \<open>\<lambda>a n. odd (take_bit LENGTH('a) a div take_bit LENGTH('a) ((2::int) ^ n))\<close>
       
   729   have \<open>((pcr_word :: int \<Rightarrow> 'a word \<Rightarrow> bool) ===> (=)) ?t bit\<close>
       
   730     by (unfold bit_def) transfer_prover
       
   731   also have \<open>?t = (\<lambda>k n. n < LENGTH('a) \<and> bit k n)\<close>
       
   732     by (simp add: fun_eq_iff bit_take_bit_iff flip: bit_def)
       
   733   finally show ?thesis .
       
   734 qed
       
   735 
       
   736 end
   444 
   737 
   445 definition shiftl1 :: "'a::len0 word \<Rightarrow> 'a word"
   738 definition shiftl1 :: "'a::len0 word \<Rightarrow> 'a word"
   446   where "shiftl1 w = word_of_int (uint w BIT False)"
   739   where "shiftl1 w = word_of_int (uint w BIT False)"
   447 
   740 
   448 definition shiftr1 :: "'a::len0 word \<Rightarrow> 'a word"
   741 definition shiftr1 :: "'a::len0 word \<Rightarrow> 'a word"