src/HOL/Computational_Algebra/Squarefree.thy
changeset 66276 acc3b7dd0b21
child 67051 e7e54a0b9197
equal deleted inserted replaced
66275:2c1d223c5417 66276:acc3b7dd0b21
       
     1 (*
       
     2   File:      HOL/Computational_Algebra/Squarefree.thy
       
     3   Author:    Manuel Eberl <eberlm@in.tum.de>
       
     4 
       
     5   Squarefreeness and decomposition of ring elements into square part and squarefree part
       
     6 *)
       
     7 section \<open>Squarefreeness\<close>
       
     8 theory Squarefree
       
     9 imports Primes
       
    10 begin
       
    11   
       
    12 (* TODO: Generalise to n-th powers *)
       
    13 
       
    14 definition squarefree :: "'a :: comm_monoid_mult \<Rightarrow> bool" where
       
    15   "squarefree n \<longleftrightarrow> (\<forall>x. x ^ 2 dvd n \<longrightarrow> x dvd 1)"
       
    16   
       
    17 lemma squarefreeI: "(\<And>x. x ^ 2 dvd n \<Longrightarrow> x dvd 1) \<Longrightarrow> squarefree n"
       
    18   by (auto simp: squarefree_def)
       
    19 
       
    20 lemma squarefreeD: "squarefree n \<Longrightarrow> x ^ 2 dvd n \<Longrightarrow> x dvd 1"
       
    21   by (auto simp: squarefree_def)
       
    22 
       
    23 lemma not_squarefreeI: "x ^ 2 dvd n \<Longrightarrow> \<not>x dvd 1 \<Longrightarrow> \<not>squarefree n"
       
    24   by (auto simp: squarefree_def)
       
    25 
       
    26 lemma not_squarefreeE [case_names square_dvd]: 
       
    27   "\<not>squarefree n \<Longrightarrow> (\<And>x. x ^ 2 dvd n \<Longrightarrow> \<not>x dvd 1 \<Longrightarrow> P) \<Longrightarrow> P"
       
    28   by (auto simp: squarefree_def)
       
    29 
       
    30 lemma not_squarefree_0 [simp]: "\<not>squarefree (0 :: 'a :: comm_semiring_1)"
       
    31   by (rule not_squarefreeI[of 0]) auto
       
    32 
       
    33 lemma squarefree_factorial_semiring:
       
    34   assumes "n \<noteq> 0"
       
    35   shows   "squarefree (n :: 'a :: factorial_semiring) \<longleftrightarrow> (\<forall>p. prime p \<longrightarrow> \<not>p ^ 2 dvd n)"
       
    36   unfolding squarefree_def
       
    37 proof safe
       
    38   assume *: "\<forall>p. prime p \<longrightarrow> \<not>p ^ 2 dvd n"
       
    39   fix x :: 'a assume x: "x ^ 2 dvd n"
       
    40   {
       
    41     assume "\<not>is_unit x"
       
    42     moreover from assms and x have "x \<noteq> 0" by auto
       
    43     ultimately obtain p where "p dvd x" "prime p"
       
    44       using prime_divisor_exists by blast
       
    45     with * have "\<not>p ^ 2 dvd n" by blast
       
    46     moreover from \<open>p dvd x\<close> have "p ^ 2 dvd x ^ 2" by (rule dvd_power_same)
       
    47     ultimately have "\<not>x ^ 2 dvd n" by (blast dest: dvd_trans)
       
    48     with x have False by contradiction
       
    49   }
       
    50   thus "is_unit x" by blast
       
    51 qed auto
       
    52 
       
    53 lemma squarefree_factorial_semiring':
       
    54   assumes "n \<noteq> 0"
       
    55   shows   "squarefree (n :: 'a :: factorial_semiring) \<longleftrightarrow> 
       
    56              (\<forall>p\<in>prime_factors n. multiplicity p n = 1)"
       
    57 proof (subst squarefree_factorial_semiring [OF assms], safe)
       
    58   fix p assume "\<forall>p\<in>#prime_factorization n. multiplicity p n = 1" "prime p" "p^2 dvd n"
       
    59   with assms show False
       
    60     by (cases "p dvd n")
       
    61        (auto simp: prime_factors_dvd power_dvd_iff_le_multiplicity not_dvd_imp_multiplicity_0)
       
    62 qed (auto intro!: multiplicity_eqI simp: power2_eq_square [symmetric])
       
    63 
       
    64 lemma squarefree_factorial_semiring'':
       
    65   assumes "n \<noteq> 0"
       
    66   shows   "squarefree (n :: 'a :: factorial_semiring) \<longleftrightarrow> 
       
    67              (\<forall>p. prime p \<longrightarrow> multiplicity p n \<le> 1)"
       
    68   by (subst squarefree_factorial_semiring'[OF assms]) (auto simp: prime_factors_multiplicity)
       
    69 
       
    70 lemma squarefree_unit [simp]: "is_unit n \<Longrightarrow> squarefree n"
       
    71 proof (rule squarefreeI) 
       
    72   fix x assume "x^2 dvd n" "n dvd 1"
       
    73   hence "is_unit (x^2)" by (rule dvd_unit_imp_unit)
       
    74   thus "is_unit x" by (simp add: is_unit_power_iff)
       
    75 qed
       
    76 
       
    77 lemma squarefree_1 [simp]: "squarefree (1 :: 'a :: algebraic_semidom)"
       
    78   by simp
       
    79 
       
    80 lemma squarefree_minus [simp]: "squarefree (-n :: 'a :: comm_ring_1) \<longleftrightarrow> squarefree n"
       
    81   by (simp add: squarefree_def)
       
    82 
       
    83 lemma squarefree_mono: "a dvd b \<Longrightarrow> squarefree b \<Longrightarrow> squarefree a"
       
    84   by (auto simp: squarefree_def intro: dvd_trans)
       
    85 
       
    86 lemma squarefree_multD:
       
    87   assumes "squarefree (a * b)"
       
    88   shows   "squarefree a" "squarefree b"
       
    89   by (rule squarefree_mono[OF _ assms], simp)+
       
    90     
       
    91 lemma squarefree_prime_elem: 
       
    92   assumes "prime_elem (p :: 'a :: factorial_semiring)"
       
    93   shows   "squarefree p"
       
    94 proof -
       
    95   from assms have "p \<noteq> 0" by auto
       
    96   show ?thesis
       
    97   proof (subst squarefree_factorial_semiring [OF \<open>p \<noteq> 0\<close>]; safe)
       
    98     fix q assume *: "prime q" "q^2 dvd p"
       
    99     with assms have "multiplicity q p \<ge> 2" by (intro multiplicity_geI) auto
       
   100     thus False using assms \<open>prime q\<close> prime_multiplicity_other[of q "normalize p"]
       
   101       by (cases "q = normalize p") simp_all
       
   102   qed
       
   103 qed
       
   104 
       
   105 lemma squarefree_prime: 
       
   106   assumes "prime (p :: 'a :: factorial_semiring)"
       
   107   shows   "squarefree p"
       
   108   using assms by (intro squarefree_prime_elem) auto
       
   109 
       
   110 lemma squarefree_mult_coprime:
       
   111   fixes a b :: "'a :: factorial_semiring_gcd"
       
   112   assumes "coprime a b" "squarefree a" "squarefree b"
       
   113   shows   "squarefree (a * b)"
       
   114 proof -
       
   115   from assms have nz: "a * b \<noteq> 0" by auto
       
   116   show ?thesis unfolding squarefree_factorial_semiring'[OF nz]
       
   117   proof
       
   118     fix p assume p: "p \<in> prime_factors (a * b)"
       
   119     {
       
   120       assume "p dvd a \<and> p dvd b"
       
   121       hence "p dvd gcd a b" by simp
       
   122       also have "gcd a b = 1" by fact
       
   123       finally have False using nz using p by (auto simp: prime_factors_dvd)
       
   124     }
       
   125     hence "\<not>(p dvd a \<and> p dvd b)" by blast
       
   126     moreover from p have "p dvd a \<or> p dvd b" using nz 
       
   127       by (auto simp: prime_factors_dvd prime_dvd_mult_iff)
       
   128     ultimately show "multiplicity p (a * b) = 1" using nz p assms(2,3)
       
   129       by (auto simp: prime_elem_multiplicity_mult_distrib prime_factors_multiplicity
       
   130             not_dvd_imp_multiplicity_0 squarefree_factorial_semiring')
       
   131   qed
       
   132 qed
       
   133 
       
   134 lemma squarefree_prod_coprime:
       
   135   fixes f :: "'a \<Rightarrow> 'b :: factorial_semiring_gcd"
       
   136   assumes "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime (f a) (f b)"
       
   137   assumes "\<And>a. a \<in> A \<Longrightarrow> squarefree (f a)"
       
   138   shows   "squarefree (prod f A)"
       
   139   using assms 
       
   140   by (induction A rule: infinite_finite_induct) 
       
   141      (auto intro!: squarefree_mult_coprime prod_coprime')
       
   142 
       
   143 lemma squarefree_powerD: "m > 0 \<Longrightarrow> squarefree (n ^ m) \<Longrightarrow> squarefree n"
       
   144   by (cases m) (auto dest: squarefree_multD)
       
   145 
       
   146 lemma squarefree_power_iff: 
       
   147   "squarefree (n ^ m) \<longleftrightarrow> m = 0 \<or> is_unit n \<or> (squarefree n \<and> m = 1)"
       
   148 proof safe
       
   149   assume "squarefree (n ^ m)" "m > 0" "\<not>is_unit n"
       
   150   show "m = 1"
       
   151   proof (rule ccontr)
       
   152     assume "m \<noteq> 1"
       
   153     with \<open>m > 0\<close> have "n ^ 2 dvd n ^ m" by (intro le_imp_power_dvd) auto
       
   154     from this and \<open>\<not>is_unit n\<close> have "\<not>squarefree (n ^ m)" by (rule not_squarefreeI)
       
   155     with \<open>squarefree (n ^ m)\<close> show False by contradiction
       
   156   qed
       
   157 qed (auto simp: is_unit_power_iff dest: squarefree_powerD)
       
   158 
       
   159 definition squarefree_nat :: "nat \<Rightarrow> bool" where
       
   160   [code_abbrev]: "squarefree_nat = squarefree"
       
   161   
       
   162 lemma squarefree_nat_code_naive [code]: 
       
   163   "squarefree_nat n \<longleftrightarrow> n \<noteq> 0 \<and> (\<forall>k\<in>{2..n}. \<not>k ^ 2 dvd n)"
       
   164 proof safe
       
   165   assume *: "\<forall>k\<in>{2..n}. \<not> k\<^sup>2 dvd n" and n: "n > 0"
       
   166   show "squarefree_nat n" unfolding squarefree_nat_def
       
   167   proof (rule squarefreeI)
       
   168     fix k assume k: "k ^ 2 dvd n"
       
   169     have "k dvd n" by (rule dvd_trans[OF _ k]) auto
       
   170     with n have "k \<le> n" by (intro dvd_imp_le)
       
   171     with bspec[OF *, of k] k have "\<not>k > 1" by (intro notI) auto
       
   172     moreover from k and n have "k \<noteq> 0" by (intro notI) auto
       
   173     ultimately have "k = 1" by presburger
       
   174     thus "is_unit k" by simp
       
   175   qed
       
   176 qed (auto simp: squarefree_nat_def squarefree_def intro!: Nat.gr0I)
       
   177 
       
   178 
       
   179 
       
   180 definition square_part :: "'a :: factorial_semiring \<Rightarrow> 'a" where
       
   181   "square_part n = (if n = 0 then 0 else 
       
   182      normalize (\<Prod>p\<in>prime_factors n. p ^ (multiplicity p n div 2)))"
       
   183   
       
   184 lemma square_part_nonzero: 
       
   185   "n \<noteq> 0 \<Longrightarrow> square_part n = normalize (\<Prod>p\<in>prime_factors n. p ^ (multiplicity p n div 2))"
       
   186   by (simp add: square_part_def)
       
   187   
       
   188 lemma square_part_0 [simp]: "square_part 0 = 0"
       
   189   by (simp add: square_part_def)
       
   190 
       
   191 lemma square_part_unit [simp]: "is_unit x \<Longrightarrow> square_part x = 1"
       
   192   by (auto simp: square_part_def prime_factorization_unit)
       
   193 
       
   194 lemma square_part_1 [simp]: "square_part 1 = 1"
       
   195   by simp
       
   196     
       
   197 lemma square_part_0_iff [simp]: "square_part n = 0 \<longleftrightarrow> n = 0"
       
   198   by (simp add: square_part_def)
       
   199 
       
   200 lemma normalize_uminus [simp]: 
       
   201   "normalize (-x :: 'a :: {normalization_semidom, comm_ring_1}) = normalize x"
       
   202   by (rule associatedI) auto
       
   203 
       
   204 lemma multiplicity_uminus_right [simp]:
       
   205   "multiplicity (x :: 'a :: {factorial_semiring, comm_ring_1}) (-y) = multiplicity x y"
       
   206 proof -
       
   207   have "multiplicity x (-y) = multiplicity x (normalize (-y))"
       
   208     by (rule multiplicity_normalize_right [symmetric])
       
   209   also have "\<dots> = multiplicity x y" by simp
       
   210   finally show ?thesis .
       
   211 qed
       
   212 
       
   213 lemma multiplicity_uminus_left [simp]:
       
   214   "multiplicity (-x :: 'a :: {factorial_semiring, comm_ring_1}) y = multiplicity x y"
       
   215 proof -
       
   216   have "multiplicity (-x) y = multiplicity (normalize (-x)) y"
       
   217     by (rule multiplicity_normalize_left [symmetric])
       
   218   also have "\<dots> = multiplicity x y" by simp
       
   219   finally show ?thesis .
       
   220 qed
       
   221 
       
   222 lemma prime_factorization_uminus [simp]:
       
   223   "prime_factorization (-x :: 'a :: {factorial_semiring, comm_ring_1}) = prime_factorization x"
       
   224   by (rule prime_factorization_cong) simp_all
       
   225 
       
   226 lemma square_part_uminus [simp]: 
       
   227     "square_part (-x :: 'a :: {factorial_semiring, comm_ring_1}) = square_part x"
       
   228   by (simp add: square_part_def)
       
   229   
       
   230 lemma prime_multiplicity_square_part:
       
   231   assumes "prime p"
       
   232   shows   "multiplicity p (square_part n) = multiplicity p n div 2"
       
   233 proof (cases "n = 0")
       
   234   case False
       
   235   thus ?thesis unfolding square_part_nonzero[OF False] multiplicity_normalize_right
       
   236     using finite_prime_divisors[of n] assms
       
   237     by (subst multiplicity_prod_prime_powers)
       
   238        (auto simp: not_dvd_imp_multiplicity_0 prime_factors_dvd multiplicity_prod_prime_powers)
       
   239 qed auto
       
   240 
       
   241 lemma square_part_square_dvd [simp, intro]: "square_part n ^ 2 dvd n"
       
   242 proof (cases "n = 0")
       
   243   case False
       
   244   thus ?thesis
       
   245     by (intro multiplicity_le_imp_dvd) 
       
   246        (auto simp: prime_multiplicity_square_part prime_elem_multiplicity_power_distrib)
       
   247 qed auto
       
   248   
       
   249 lemma prime_multiplicity_le_imp_dvd:
       
   250   assumes "x \<noteq> 0" "y \<noteq> 0"
       
   251   shows   "x dvd y \<longleftrightarrow> (\<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y)"
       
   252   using assms by (auto intro: multiplicity_le_imp_dvd dvd_imp_multiplicity_le)
       
   253 
       
   254 lemma dvd_square_part_iff: "x dvd square_part n \<longleftrightarrow> x ^ 2 dvd n"
       
   255 proof (cases "x = 0"; cases "n = 0")
       
   256   assume nz: "x \<noteq> 0" "n \<noteq> 0"
       
   257   thus ?thesis
       
   258     by (subst (1 2) prime_multiplicity_le_imp_dvd)
       
   259        (auto simp: prime_multiplicity_square_part prime_elem_multiplicity_power_distrib)
       
   260 qed auto
       
   261 
       
   262 
       
   263 definition squarefree_part :: "'a :: factorial_semiring \<Rightarrow> 'a" where
       
   264   "squarefree_part n = (if n = 0 then 1 else n div square_part n ^ 2)"
       
   265 
       
   266 lemma squarefree_part_0 [simp]: "squarefree_part 0 = 1"
       
   267   by (simp add: squarefree_part_def)
       
   268 
       
   269 lemma squarefree_part_unit [simp]: "is_unit n \<Longrightarrow> squarefree_part n = n"
       
   270   by (auto simp add: squarefree_part_def)
       
   271   
       
   272 lemma squarefree_part_1 [simp]: "squarefree_part 1 = 1"
       
   273   by simp
       
   274     
       
   275 lemma squarefree_decompose: "n = squarefree_part n * square_part n ^ 2"
       
   276   by (simp add: squarefree_part_def)
       
   277 
       
   278 lemma squarefree_part_uminus [simp]: 
       
   279   assumes "x \<noteq> 0"
       
   280   shows   "squarefree_part (-x :: 'a :: {factorial_semiring, comm_ring_1}) = -squarefree_part x"
       
   281 proof -
       
   282   have "-(squarefree_part x * square_part x ^ 2) = -x" 
       
   283     by (subst squarefree_decompose [symmetric]) auto
       
   284   also have "\<dots> = squarefree_part (-x) * square_part (-x) ^ 2" by (rule squarefree_decompose)
       
   285   finally have "(- squarefree_part x) * square_part x ^ 2 = 
       
   286                   squarefree_part (-x) * square_part x ^ 2" by simp
       
   287   thus ?thesis using assms by (subst (asm) mult_right_cancel) auto
       
   288 qed
       
   289 
       
   290 lemma squarefree_part_nonzero [simp]: "squarefree_part n \<noteq> 0"
       
   291   using squarefree_decompose[of n] by (cases "n \<noteq> 0") auto    
       
   292 
       
   293 lemma prime_multiplicity_squarefree_part:
       
   294   assumes "prime p"
       
   295   shows   "multiplicity p (squarefree_part n) = multiplicity p n mod 2"
       
   296 proof (cases "n = 0")
       
   297   case False
       
   298   hence n: "n \<noteq> 0" by auto
       
   299   have "multiplicity p n mod 2 + 2 * (multiplicity p n div 2) = multiplicity p n" by simp
       
   300   also have "\<dots> = multiplicity p (squarefree_part n * square_part n ^ 2)"
       
   301     by (subst squarefree_decompose[of n]) simp
       
   302   also from assms n have "\<dots> = multiplicity p (squarefree_part n) + 2 * (multiplicity p n div 2)"
       
   303     by (subst prime_elem_multiplicity_mult_distrib) 
       
   304        (auto simp: prime_elem_multiplicity_power_distrib prime_multiplicity_square_part)
       
   305   finally show ?thesis by (subst (asm) add_right_cancel) simp
       
   306 qed auto
       
   307   
       
   308 lemma prime_multiplicity_squarefree_part_le_Suc_0 [intro]:
       
   309   assumes "prime p"
       
   310   shows   "multiplicity p (squarefree_part n) \<le> Suc 0"
       
   311   by (simp add: assms prime_multiplicity_squarefree_part)
       
   312 
       
   313 lemma squarefree_squarefree_part [simp, intro]: "squarefree (squarefree_part n)"
       
   314   by (subst squarefree_factorial_semiring'')
       
   315      (auto simp: prime_multiplicity_squarefree_part_le_Suc_0)
       
   316   
       
   317 lemma squarefree_decomposition_unique:
       
   318   assumes "square_part m = square_part n"
       
   319   assumes "squarefree_part m = squarefree_part n"
       
   320   shows   "m = n"
       
   321   by (subst (1 2) squarefree_decompose) (simp_all add: assms)
       
   322     
       
   323 lemma normalize_square_part [simp]: "normalize (square_part x) = square_part x"
       
   324   by (simp add: square_part_def)
       
   325 
       
   326 lemma square_part_even_power': "square_part (x ^ (2 * n)) = normalize (x ^ n)"
       
   327 proof (cases "x = 0")
       
   328   case False
       
   329   have "normalize (square_part (x ^ (2 * n))) = normalize (x ^ n)" using False
       
   330     by (intro multiplicity_eq_imp_eq)
       
   331        (auto simp: prime_multiplicity_square_part prime_elem_multiplicity_power_distrib)
       
   332   thus ?thesis by simp
       
   333 qed (auto simp: power_0_left)
       
   334 
       
   335 lemma square_part_even_power: "even n \<Longrightarrow> square_part (x ^ n) = normalize (x ^ (n div 2))"
       
   336   by (subst square_part_even_power' [symmetric]) auto
       
   337 
       
   338 lemma square_part_odd_power': "square_part (x ^ (Suc (2 * n))) = normalize (x ^ n * square_part x)"
       
   339 proof (cases "x = 0")
       
   340   case False
       
   341   have "normalize (square_part (x ^ (Suc (2 * n)))) = normalize (square_part x * x ^ n)" 
       
   342   proof (rule multiplicity_eq_imp_eq, goal_cases)
       
   343     case (3 p)
       
   344     hence "multiplicity p (square_part (x ^ Suc (2 * n))) = 
       
   345              (2 * (n * multiplicity p x) + multiplicity p x) div 2"
       
   346       by (subst prime_multiplicity_square_part)
       
   347          (auto simp: False prime_elem_multiplicity_power_distrib algebra_simps simp del: power_Suc)
       
   348     also from 3 False have "\<dots> = multiplicity p (square_part x * x ^ n)"
       
   349       by (subst div_mult_self4) (auto simp: prime_multiplicity_square_part 
       
   350             prime_elem_multiplicity_mult_distrib prime_elem_multiplicity_power_distrib)
       
   351     finally show ?case .
       
   352   qed (insert False, auto)
       
   353   thus ?thesis by (simp add: mult_ac)
       
   354 qed auto
       
   355 
       
   356 lemma square_part_odd_power: 
       
   357   "odd n \<Longrightarrow> square_part (x ^ n) = normalize (x ^ (n div 2) * square_part x)"
       
   358   by (subst square_part_odd_power' [symmetric]) auto
       
   359 
       
   360 end