doc-src/AxClass/Group/document/Semigroups.tex
changeset 30242 aea5d7fa7ef5
parent 30241 3a1aef73b2b2
parent 30236 e70dae49dc57
child 30244 48543b307e99
child 30251 7aec011818e0
child 30257 06b2d7f9f64b
equal deleted inserted replaced
30241:3a1aef73b2b2 30242:aea5d7fa7ef5
     1 %
       
     2 \begin{isabellebody}%
       
     3 \def\isabellecontext{Semigroups}%
       
     4 %
       
     5 \isamarkupheader{Semigroups%
       
     6 }
       
     7 \isamarkuptrue%
       
     8 %
       
     9 \isadelimtheory
       
    10 %
       
    11 \endisadelimtheory
       
    12 %
       
    13 \isatagtheory
       
    14 \isacommand{theory}\isamarkupfalse%
       
    15 \ Semigroups\ \isakeyword{imports}\ Main\ \isakeyword{begin}%
       
    16 \endisatagtheory
       
    17 {\isafoldtheory}%
       
    18 %
       
    19 \isadelimtheory
       
    20 %
       
    21 \endisadelimtheory
       
    22 %
       
    23 \begin{isamarkuptext}%
       
    24 \medskip\noindent An axiomatic type class is simply a class of types
       
    25   that all meet certain properties, which are also called \emph{class
       
    26   axioms}. Thus, type classes may be also understood as type
       
    27   predicates --- i.e.\ abstractions over a single type argument \isa{{\isacharprime}a}.  Class axioms typically contain polymorphic constants that
       
    28   depend on this type \isa{{\isacharprime}a}.  These \emph{characteristic
       
    29   constants} behave like operations associated with the ``carrier''
       
    30   type \isa{{\isacharprime}a}.
       
    31 
       
    32   We illustrate these basic concepts by the following formulation of
       
    33   semigroups.%
       
    34 \end{isamarkuptext}%
       
    35 \isamarkuptrue%
       
    36 \isacommand{consts}\isamarkupfalse%
       
    37 \isanewline
       
    38 \ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequoteopen}{\isasymodot}{\isachardoublequoteclose}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
       
    39 \isacommand{axclass}\isamarkupfalse%
       
    40 \ semigroup\ {\isasymsubseteq}\ type\isanewline
       
    41 \ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequoteclose}%
       
    42 \begin{isamarkuptext}%
       
    43 \noindent Above we have first declared a polymorphic constant \isa{{\isasymodot}\ {\isasymColon}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a} and then defined the class \isa{semigroup} of
       
    44   all types \isa{{\isasymtau}} such that \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is indeed an
       
    45   associative operator.  The \isa{assoc} axiom contains exactly one
       
    46   type variable, which is invisible in the above presentation, though.
       
    47   Also note that free term variables (like \isa{x}, \isa{y},
       
    48   \isa{z}) are allowed for user convenience --- conceptually all of
       
    49   these are bound by outermost universal quantifiers.
       
    50 
       
    51   \medskip In general, type classes may be used to describe
       
    52   \emph{structures} with exactly one carrier \isa{{\isacharprime}a} and a fixed
       
    53   \emph{signature}.  Different signatures require different classes.
       
    54   Below, class \isa{plus{\isacharunderscore}semigroup} represents semigroups \isa{{\isacharparenleft}{\isasymtau}{\isacharcomma}\ {\isasymoplus}\isactrlsup {\isasymtau}{\isacharparenright}}, while the original \isa{semigroup} would
       
    55   correspond to semigroups of the form \isa{{\isacharparenleft}{\isasymtau}{\isacharcomma}\ {\isasymodot}\isactrlsup {\isasymtau}{\isacharparenright}}.%
       
    56 \end{isamarkuptext}%
       
    57 \isamarkuptrue%
       
    58 \isacommand{consts}\isamarkupfalse%
       
    59 \isanewline
       
    60 \ \ plus\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequoteopen}{\isasymoplus}{\isachardoublequoteclose}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
       
    61 \isacommand{axclass}\isamarkupfalse%
       
    62 \ plus{\isacharunderscore}semigroup\ {\isasymsubseteq}\ type\isanewline
       
    63 \ \ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymoplus}\ y{\isacharparenright}\ {\isasymoplus}\ z\ {\isacharequal}\ x\ {\isasymoplus}\ {\isacharparenleft}y\ {\isasymoplus}\ z{\isacharparenright}{\isachardoublequoteclose}%
       
    64 \begin{isamarkuptext}%
       
    65 \noindent Even if classes \isa{plus{\isacharunderscore}semigroup} and \isa{semigroup} both represent semigroups in a sense, they are certainly
       
    66   not quite the same.%
       
    67 \end{isamarkuptext}%
       
    68 \isamarkuptrue%
       
    69 %
       
    70 \isadelimtheory
       
    71 %
       
    72 \endisadelimtheory
       
    73 %
       
    74 \isatagtheory
       
    75 \isacommand{end}\isamarkupfalse%
       
    76 %
       
    77 \endisatagtheory
       
    78 {\isafoldtheory}%
       
    79 %
       
    80 \isadelimtheory
       
    81 %
       
    82 \endisadelimtheory
       
    83 \isanewline
       
    84 \end{isabellebody}%
       
    85 %%% Local Variables:
       
    86 %%% mode: latex
       
    87 %%% TeX-master: "root"
       
    88 %%% End: