src/HOL/AxClasses/Tutorial/Group.thy
changeset 8920 af5e09b6c208
parent 2907 0e272e4c7cb2
child 8922 490637ba1d7f
equal deleted inserted replaced
8919:d00b01ed8539 8920:af5e09b6c208
     1 (*  Title:      HOL/AxClasses/Tutorial/Group.thy
     1 (*  Title:      HOL/AxClasses/Tutorial/Group.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Markus Wenzel, TU Muenchen
     3     Author:     Markus Wenzel, TU Muenchen
     4 
       
     5 Define classes "semigroup", "group", "agroup".
       
     6 *)
     4 *)
     7 
     5 
     8 Group = Sigs +
     6 theory Group = Main:;
     9 
     7 
    10 (* semigroups *)
     8 subsection {* Monoids and Groups *};
       
     9 
       
    10 consts
       
    11   times :: "'a => 'a => 'a"    (infixl "[*]" 70)
       
    12   inverse :: "'a => 'a"
       
    13   one :: 'a;
       
    14 
    11 
    15 
    12 axclass
    16 axclass
    13   semigroup < term
    17   monoid < "term"
    14   assoc         "(x <*> y) <*> z = x <*> (y <*> z)"
    18   assoc:      "(x [*] y) [*] z = x [*] (y [*] z)"
       
    19   left_unit:  "one [*] x = x"
       
    20   right_unit: "x [*] one = x";
    15 
    21 
    16 
    22 
    17 (* groups *)
    23 axclass
       
    24   semigroup < "term"
       
    25   assoc: "(x [*] y) [*] z = x [*] (y [*] z)";
    18 
    26 
    19 axclass
    27 axclass
    20   group < semigroup
    28   group < semigroup
    21   left_unit     "1 <*> x = x"
    29   left_unit:    "one [*] x = x"
    22   left_inverse  "inverse x <*> x = 1"
    30   left_inverse: "inverse x [*] x = one";
    23 
       
    24 
       
    25 (* abelian groups *)
       
    26 
    31 
    27 axclass
    32 axclass
    28   agroup < group
    33   agroup < group
    29   commut        "x <*> y = y <*> x"
    34   commute: "x [*] y = y [*] x";
    30 
    35 
    31 end
    36 
       
    37 subsection {* Abstract reasoning *};
       
    38 
       
    39 theorem group_right_inverse: "x [*] inverse x = (one::'a::group)";
       
    40 proof -;
       
    41   have "x [*] inverse x = one [*] (x [*] inverse x)";
       
    42     by (simp only: group.left_unit);
       
    43   also; have "... = one [*] x [*] inverse x";
       
    44     by (simp only: semigroup.assoc);
       
    45   also; have "... = inverse (inverse x) [*] inverse x [*] x [*] inverse x";
       
    46     by (simp only: group.left_inverse);
       
    47   also; have "... = inverse (inverse x) [*] (inverse x [*] x) [*] inverse x";
       
    48     by (simp only: semigroup.assoc);
       
    49   also; have "... = inverse (inverse x) [*] one [*] inverse x";
       
    50     by (simp only: group.left_inverse);
       
    51   also; have "... = inverse (inverse x) [*] (one [*] inverse x)";
       
    52     by (simp only: semigroup.assoc);
       
    53   also; have "... = inverse (inverse x) [*] inverse x";
       
    54     by (simp only: group.left_unit);
       
    55   also; have "... = one";
       
    56     by (simp only: group.left_inverse);
       
    57   finally; show ?thesis; .;
       
    58 qed;
       
    59 
       
    60 theorem group_right_unit: "x [*] one = (x::'a::group)";
       
    61 proof -;
       
    62   have "x [*] one = x [*] (inverse x [*] x)";
       
    63     by (simp only: group.left_inverse);
       
    64   also; have "... = x [*] inverse x [*] x";
       
    65     by (simp only: semigroup.assoc);
       
    66   also; have "... = one [*] x";
       
    67     by (simp only: group_right_inverse);
       
    68   also; have "... = x";
       
    69     by (simp only: group.left_unit);
       
    70   finally; show ?thesis; .;
       
    71 qed;
       
    72 
       
    73 
       
    74 subsection {* Abstract instantiation *};
       
    75 
       
    76 instance monoid < semigroup;
       
    77 proof intro_classes;
       
    78   fix x y z :: "'a::monoid";
       
    79   show "x [*] y [*] z = x [*] (y [*] z)";
       
    80     by (rule monoid.assoc);
       
    81 qed;
       
    82 
       
    83 instance group < monoid;
       
    84 proof intro_classes;
       
    85   fix x y z :: "'a::group";
       
    86   show "x [*] y [*] z = x [*] (y [*] z)";
       
    87     by (rule semigroup.assoc);
       
    88   show "one [*] x = x";
       
    89     by (rule group.left_unit);
       
    90   show "x [*] one = x";
       
    91     by (rule group_right_unit);
       
    92 qed;
       
    93 
       
    94 
       
    95 subsection {* Concrete instantiation \label{sec:inst-arity} *};
       
    96 
       
    97 defs
       
    98   times_bool_def:   "x [*] y == x ~= (y::bool)"
       
    99   inverse_bool_def: "inverse x == x::bool"
       
   100   unit_bool_def:    "one == False";
       
   101 
       
   102 instance bool :: agroup;
       
   103 proof (intro_classes,
       
   104     unfold times_bool_def inverse_bool_def unit_bool_def);
       
   105   fix x y z;
       
   106   show "((x ~= y) ~= z) = (x ~= (y ~= z))"; by blast;
       
   107   show "(False ~= x) = x"; by blast;
       
   108   show "(x ~= x) = False"; by blast;
       
   109   show "(x ~= y) = (y ~= x)"; by blast;
       
   110 qed;
       
   111 
       
   112 
       
   113 subsection {* Lifting and Functors *};
       
   114 
       
   115 defs
       
   116   times_prod_def: "p [*] q == (fst p [*] fst q, snd p [*] snd q)";
       
   117 
       
   118 instance * :: (semigroup, semigroup) semigroup;
       
   119 proof (intro_classes, unfold times_prod_def);
       
   120   fix p q r :: "'a::semigroup * 'b::semigroup";
       
   121   show
       
   122     "(fst (fst p [*] fst q, snd p [*] snd q) [*] fst r,
       
   123       snd (fst p [*] fst q, snd p [*] snd q) [*] snd r) =
       
   124        (fst p [*] fst (fst q [*] fst r, snd q [*] snd r),
       
   125         snd p [*] snd (fst q [*] fst r, snd q [*] snd r))";
       
   126     by (simp add: semigroup.assoc);
       
   127 qed;
       
   128 
       
   129 end;