equal
deleted
inserted
replaced
1526 using mono by auto |
1526 using mono by auto |
1527 moreover have "AE x in M. ereal (- g x) \<le> ereal (- f x)" |
1527 moreover have "AE x in M. ereal (- g x) \<le> ereal (- f x)" |
1528 using mono by auto |
1528 using mono by auto |
1529 ultimately show ?thesis using fg |
1529 ultimately show ?thesis using fg |
1530 by (auto intro!: add_mono positive_integral_mono_AE real_of_ereal_positive_mono |
1530 by (auto intro!: add_mono positive_integral_mono_AE real_of_ereal_positive_mono |
1531 simp: positive_integral_positive lebesgue_integral_def diff_minus) |
1531 simp: positive_integral_positive lebesgue_integral_def algebra_simps) |
1532 qed |
1532 qed |
1533 |
1533 |
1534 lemma integral_mono: |
1534 lemma integral_mono: |
1535 assumes "integrable M f" "integrable M g" "\<And>t. t \<in> space M \<Longrightarrow> f t \<le> g t" |
1535 assumes "integrable M f" "integrable M g" "\<And>t. t \<in> space M \<Longrightarrow> f t \<le> g t" |
1536 shows "integral\<^sup>L M f \<le> integral\<^sup>L M g" |
1536 shows "integral\<^sup>L M f \<le> integral\<^sup>L M g" |
1730 lemma integral_diff[simp, intro]: |
1730 lemma integral_diff[simp, intro]: |
1731 assumes f: "integrable M f" and g: "integrable M g" |
1731 assumes f: "integrable M f" and g: "integrable M g" |
1732 shows "integrable M (\<lambda>t. f t - g t)" |
1732 shows "integrable M (\<lambda>t. f t - g t)" |
1733 and "(\<integral> t. f t - g t \<partial>M) = integral\<^sup>L M f - integral\<^sup>L M g" |
1733 and "(\<integral> t. f t - g t \<partial>M) = integral\<^sup>L M f - integral\<^sup>L M g" |
1734 using integral_add[OF f integral_minus(1)[OF g]] |
1734 using integral_add[OF f integral_minus(1)[OF g]] |
1735 unfolding diff_minus integral_minus(2)[OF g] |
1735 unfolding integral_minus(2)[OF g] |
1736 by auto |
1736 by auto |
1737 |
1737 |
1738 lemma integral_indicator[simp, intro]: |
1738 lemma integral_indicator[simp, intro]: |
1739 assumes "A \<in> sets M" and "(emeasure M) A \<noteq> \<infinity>" |
1739 assumes "A \<in> sets M" and "(emeasure M) A \<noteq> \<infinity>" |
1740 shows "integral\<^sup>L M (indicator A) = real (emeasure M A)" (is ?int) |
1740 shows "integral\<^sup>L M (indicator A) = real (emeasure M A)" (is ?int) |