src/HOL/Library/RBT_Impl.thy
changeset 36147 b43b22f63665
parent 35618 b7bfd4cbcfc0
child 36176 3fe7e97ccca8
equal deleted inserted replaced
36146:7bfbb247a5df 36147:b43b22f63665
       
     1 (*  Title:      RBT_Impl.thy
       
     2     Author:     Markus Reiter, TU Muenchen
       
     3     Author:     Alexander Krauss, TU Muenchen
       
     4 *)
       
     5 
       
     6 header {* Implementation of Red-Black Trees *}
       
     7 
       
     8 theory RBT_Impl
       
     9 imports Main
       
    10 begin
       
    11 
       
    12 text {*
       
    13   For applications, you should use theory @{text RBT} which defines
       
    14   an abstract type of red-black tree obeying the invariant.
       
    15 *}
       
    16 
       
    17 subsection {* Datatype of RB trees *}
       
    18 
       
    19 datatype color = R | B
       
    20 datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
       
    21 
       
    22 lemma rbt_cases:
       
    23   obtains (Empty) "t = Empty" 
       
    24   | (Red) l k v r where "t = Branch R l k v r" 
       
    25   | (Black) l k v r where "t = Branch B l k v r"
       
    26 proof (cases t)
       
    27   case Empty with that show thesis by blast
       
    28 next
       
    29   case (Branch c) with that show thesis by (cases c) blast+
       
    30 qed
       
    31 
       
    32 subsection {* Tree properties *}
       
    33 
       
    34 subsubsection {* Content of a tree *}
       
    35 
       
    36 primrec entries :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
       
    37 where 
       
    38   "entries Empty = []"
       
    39 | "entries (Branch _ l k v r) = entries l @ (k,v) # entries r"
       
    40 
       
    41 abbreviation (input) entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
       
    42 where
       
    43   "entry_in_tree k v t \<equiv> (k, v) \<in> set (entries t)"
       
    44 
       
    45 definition keys :: "('a, 'b) rbt \<Rightarrow> 'a list" where
       
    46   "keys t = map fst (entries t)"
       
    47 
       
    48 lemma keys_simps [simp, code]:
       
    49   "keys Empty = []"
       
    50   "keys (Branch c l k v r) = keys l @ k # keys r"
       
    51   by (simp_all add: keys_def)
       
    52 
       
    53 lemma entry_in_tree_keys:
       
    54   assumes "(k, v) \<in> set (entries t)"
       
    55   shows "k \<in> set (keys t)"
       
    56 proof -
       
    57   from assms have "fst (k, v) \<in> fst ` set (entries t)" by (rule imageI)
       
    58   then show ?thesis by (simp add: keys_def)
       
    59 qed
       
    60 
       
    61 lemma keys_entries:
       
    62   "k \<in> set (keys t) \<longleftrightarrow> (\<exists>v. (k, v) \<in> set (entries t))"
       
    63   by (auto intro: entry_in_tree_keys) (auto simp add: keys_def)
       
    64 
       
    65 
       
    66 subsubsection {* Search tree properties *}
       
    67 
       
    68 definition tree_less :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
       
    69 where
       
    70   tree_less_prop: "tree_less k t \<longleftrightarrow> (\<forall>x\<in>set (keys t). x < k)"
       
    71 
       
    72 abbreviation tree_less_symbol (infix "|\<guillemotleft>" 50)
       
    73 where "t |\<guillemotleft> x \<equiv> tree_less x t"
       
    74 
       
    75 definition tree_greater :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
       
    76 where
       
    77   tree_greater_prop: "tree_greater k t = (\<forall>x\<in>set (keys t). k < x)"
       
    78 
       
    79 lemma tree_less_simps [simp]:
       
    80   "tree_less k Empty = True"
       
    81   "tree_less k (Branch c lt kt v rt) \<longleftrightarrow> kt < k \<and> tree_less k lt \<and> tree_less k rt"
       
    82   by (auto simp add: tree_less_prop)
       
    83 
       
    84 lemma tree_greater_simps [simp]:
       
    85   "tree_greater k Empty = True"
       
    86   "tree_greater k (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> tree_greater k lt \<and> tree_greater k rt"
       
    87   by (auto simp add: tree_greater_prop)
       
    88 
       
    89 lemmas tree_ord_props = tree_less_prop tree_greater_prop
       
    90 
       
    91 lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys
       
    92 lemmas tree_less_nit = tree_less_prop entry_in_tree_keys
       
    93 
       
    94 lemma tree_less_eq_trans: "l |\<guillemotleft> u \<Longrightarrow> u \<le> v \<Longrightarrow> l |\<guillemotleft> v"
       
    95   and tree_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y"
       
    96   and tree_greater_eq_trans: "u \<le> v \<Longrightarrow> v \<guillemotleft>| r \<Longrightarrow> u \<guillemotleft>| r"
       
    97   and tree_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t"
       
    98   by (auto simp: tree_ord_props)
       
    99 
       
   100 primrec sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
       
   101 where
       
   102   "sorted Empty = True"
       
   103 | "sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> sorted l \<and> sorted r)"
       
   104 
       
   105 lemma sorted_entries:
       
   106   "sorted t \<Longrightarrow> List.sorted (List.map fst (entries t))"
       
   107 by (induct t) 
       
   108   (force simp: sorted_append sorted_Cons tree_ord_props 
       
   109       dest!: entry_in_tree_keys)+
       
   110 
       
   111 lemma distinct_entries:
       
   112   "sorted t \<Longrightarrow> distinct (List.map fst (entries t))"
       
   113 by (induct t) 
       
   114   (force simp: sorted_append sorted_Cons tree_ord_props 
       
   115       dest!: entry_in_tree_keys)+
       
   116 
       
   117 
       
   118 subsubsection {* Tree lookup *}
       
   119 
       
   120 primrec lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
       
   121 where
       
   122   "lookup Empty k = None"
       
   123 | "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)"
       
   124 
       
   125 lemma lookup_keys: "sorted t \<Longrightarrow> dom (lookup t) = set (keys t)"
       
   126   by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop)
       
   127 
       
   128 lemma dom_lookup_Branch: 
       
   129   "sorted (Branch c t1 k v t2) \<Longrightarrow> 
       
   130     dom (lookup (Branch c t1 k v t2)) 
       
   131     = Set.insert k (dom (lookup t1) \<union> dom (lookup t2))"
       
   132 proof -
       
   133   assume "sorted (Branch c t1 k v t2)"
       
   134   moreover from this have "sorted t1" "sorted t2" by simp_all
       
   135   ultimately show ?thesis by (simp add: lookup_keys)
       
   136 qed
       
   137 
       
   138 lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))"
       
   139 proof (induct t)
       
   140   case Empty then show ?case by simp
       
   141 next
       
   142   case (Branch color t1 a b t2)
       
   143   let ?A = "Set.insert a (dom (lookup t1) \<union> dom (lookup t2))"
       
   144   have "dom (lookup (Branch color t1 a b t2)) \<subseteq> ?A" by (auto split: split_if_asm)
       
   145   moreover from Branch have "finite (insert a (dom (lookup t1) \<union> dom (lookup t2)))" by simp
       
   146   ultimately show ?case by (rule finite_subset)
       
   147 qed 
       
   148 
       
   149 lemma lookup_tree_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> lookup t k = None" 
       
   150 by (induct t) auto
       
   151 
       
   152 lemma lookup_tree_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> lookup t k = None"
       
   153 by (induct t) auto
       
   154 
       
   155 lemma lookup_Empty: "lookup Empty = empty"
       
   156 by (rule ext) simp
       
   157 
       
   158 lemma map_of_entries:
       
   159   "sorted t \<Longrightarrow> map_of (entries t) = lookup t"
       
   160 proof (induct t)
       
   161   case Empty thus ?case by (simp add: lookup_Empty)
       
   162 next
       
   163   case (Branch c t1 k v t2)
       
   164   have "lookup (Branch c t1 k v t2) = lookup t2 ++ [k\<mapsto>v] ++ lookup t1"
       
   165   proof (rule ext)
       
   166     fix x
       
   167     from Branch have SORTED: "sorted (Branch c t1 k v t2)" by simp
       
   168     let ?thesis = "lookup (Branch c t1 k v t2) x = (lookup t2 ++ [k \<mapsto> v] ++ lookup t1) x"
       
   169 
       
   170     have DOM_T1: "!!k'. k'\<in>dom (lookup t1) \<Longrightarrow> k>k'"
       
   171     proof -
       
   172       fix k'
       
   173       from SORTED have "t1 |\<guillemotleft> k" by simp
       
   174       with tree_less_prop have "\<forall>k'\<in>set (keys t1). k>k'" by auto
       
   175       moreover assume "k'\<in>dom (lookup t1)"
       
   176       ultimately show "k>k'" using lookup_keys SORTED by auto
       
   177     qed
       
   178     
       
   179     have DOM_T2: "!!k'. k'\<in>dom (lookup t2) \<Longrightarrow> k<k'"
       
   180     proof -
       
   181       fix k'
       
   182       from SORTED have "k \<guillemotleft>| t2" by simp
       
   183       with tree_greater_prop have "\<forall>k'\<in>set (keys t2). k<k'" by auto
       
   184       moreover assume "k'\<in>dom (lookup t2)"
       
   185       ultimately show "k<k'" using lookup_keys SORTED by auto
       
   186     qed
       
   187     
       
   188     {
       
   189       assume C: "x<k"
       
   190       hence "lookup (Branch c t1 k v t2) x = lookup t1 x" by simp
       
   191       moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
       
   192       moreover have "x\<notin>dom (lookup t2)" proof
       
   193         assume "x\<in>dom (lookup t2)"
       
   194         with DOM_T2 have "k<x" by blast
       
   195         with C show False by simp
       
   196       qed
       
   197       ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
       
   198     } moreover {
       
   199       assume [simp]: "x=k"
       
   200       hence "lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp
       
   201       moreover have "x\<notin>dom (lookup t1)" proof
       
   202         assume "x\<in>dom (lookup t1)"
       
   203         with DOM_T1 have "k>x" by blast
       
   204         thus False by simp
       
   205       qed
       
   206       ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
       
   207     } moreover {
       
   208       assume C: "x>k"
       
   209       hence "lookup (Branch c t1 k v t2) x = lookup t2 x" by (simp add: less_not_sym[of k x])
       
   210       moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
       
   211       moreover have "x\<notin>dom (lookup t1)" proof
       
   212         assume "x\<in>dom (lookup t1)"
       
   213         with DOM_T1 have "k>x" by simp
       
   214         with C show False by simp
       
   215       qed
       
   216       ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
       
   217     } ultimately show ?thesis using less_linear by blast
       
   218   qed
       
   219   also from Branch have "lookup t2 ++ [k \<mapsto> v] ++ lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp
       
   220   finally show ?case by simp
       
   221 qed
       
   222 
       
   223 lemma lookup_in_tree: "sorted t \<Longrightarrow> lookup t k = Some v \<longleftrightarrow> (k, v) \<in> set (entries t)"
       
   224   by (simp add: map_of_entries [symmetric] distinct_entries)
       
   225 
       
   226 lemma set_entries_inject:
       
   227   assumes sorted: "sorted t1" "sorted t2" 
       
   228   shows "set (entries t1) = set (entries t2) \<longleftrightarrow> entries t1 = entries t2"
       
   229 proof -
       
   230   from sorted have "distinct (map fst (entries t1))"
       
   231     "distinct (map fst (entries t2))"
       
   232     by (auto intro: distinct_entries)
       
   233   with sorted show ?thesis
       
   234     by (auto intro: map_sorted_distinct_set_unique sorted_entries simp add: distinct_map)
       
   235 qed
       
   236 
       
   237 lemma entries_eqI:
       
   238   assumes sorted: "sorted t1" "sorted t2" 
       
   239   assumes lookup: "lookup t1 = lookup t2"
       
   240   shows "entries t1 = entries t2"
       
   241 proof -
       
   242   from sorted lookup have "map_of (entries t1) = map_of (entries t2)"
       
   243     by (simp add: map_of_entries)
       
   244   with sorted have "set (entries t1) = set (entries t2)"
       
   245     by (simp add: map_of_inject_set distinct_entries)
       
   246   with sorted show ?thesis by (simp add: set_entries_inject)
       
   247 qed
       
   248 
       
   249 lemma entries_lookup:
       
   250   assumes "sorted t1" "sorted t2" 
       
   251   shows "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
       
   252   using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric])
       
   253 
       
   254 lemma lookup_from_in_tree: 
       
   255   assumes "sorted t1" "sorted t2" 
       
   256   and "\<And>v. (k\<Colon>'a\<Colon>linorder, v) \<in> set (entries t1) \<longleftrightarrow> (k, v) \<in> set (entries t2)" 
       
   257   shows "lookup t1 k = lookup t2 k"
       
   258 proof -
       
   259   from assms have "k \<in> dom (lookup t1) \<longleftrightarrow> k \<in> dom (lookup t2)"
       
   260     by (simp add: keys_entries lookup_keys)
       
   261   with assms show ?thesis by (auto simp add: lookup_in_tree [symmetric])
       
   262 qed
       
   263 
       
   264 
       
   265 subsubsection {* Red-black properties *}
       
   266 
       
   267 primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
       
   268 where
       
   269   "color_of Empty = B"
       
   270 | "color_of (Branch c _ _ _ _) = c"
       
   271 
       
   272 primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
       
   273 where
       
   274   "bheight Empty = 0"
       
   275 | "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)"
       
   276 
       
   277 primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
       
   278 where
       
   279   "inv1 Empty = True"
       
   280 | "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)"
       
   281 
       
   282 primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" -- {* Weaker version *}
       
   283 where
       
   284   "inv1l Empty = True"
       
   285 | "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)"
       
   286 lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+
       
   287 
       
   288 primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
       
   289 where
       
   290   "inv2 Empty = True"
       
   291 | "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)"
       
   292 
       
   293 definition is_rbt :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
       
   294   "is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> sorted t"
       
   295 
       
   296 lemma is_rbt_sorted [simp]:
       
   297   "is_rbt t \<Longrightarrow> sorted t" by (simp add: is_rbt_def)
       
   298 
       
   299 theorem Empty_is_rbt [simp]:
       
   300   "is_rbt Empty" by (simp add: is_rbt_def)
       
   301 
       
   302 
       
   303 subsection {* Insertion *}
       
   304 
       
   305 fun (* slow, due to massive case splitting *)
       
   306   balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   307 where
       
   308   "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
       
   309   "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
       
   310   "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
       
   311   "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
       
   312   "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
       
   313   "balance a s t b = Branch B a s t b"
       
   314 
       
   315 lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)" 
       
   316   by (induct l k v r rule: balance.induct) auto
       
   317 
       
   318 lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)"
       
   319   by (induct l k v r rule: balance.induct) auto
       
   320 
       
   321 lemma balance_inv2: 
       
   322   assumes "inv2 l" "inv2 r" "bheight l = bheight r"
       
   323   shows "inv2 (balance l k v r)"
       
   324   using assms
       
   325   by (induct l k v r rule: balance.induct) auto
       
   326 
       
   327 lemma balance_tree_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" 
       
   328   by (induct a k x b rule: balance.induct) auto
       
   329 
       
   330 lemma balance_tree_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
       
   331   by (induct a k x b rule: balance.induct) auto
       
   332 
       
   333 lemma balance_sorted: 
       
   334   fixes k :: "'a::linorder"
       
   335   assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
       
   336   shows "sorted (balance l k v r)"
       
   337 using assms proof (induct l k v r rule: balance.induct)
       
   338   case ("2_2" a x w b y t c z s va vb vd vc)
       
   339   hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" 
       
   340     by (auto simp add: tree_ord_props)
       
   341   hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
       
   342   with "2_2" show ?case by simp
       
   343 next
       
   344   case ("3_2" va vb vd vc x w b y s c z)
       
   345   from "3_2" have "x < y \<and> tree_less x (Branch B va vb vd vc)" 
       
   346     by simp
       
   347   hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
       
   348   with "3_2" show ?case by simp
       
   349 next
       
   350   case ("3_3" x w b y s c z t va vb vd vc)
       
   351   from "3_3" have "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
       
   352   hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
       
   353   with "3_3" show ?case by simp
       
   354 next
       
   355   case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
       
   356   hence "x < y \<and> tree_less x (Branch B vd ve vg vf)" by simp
       
   357   hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans)
       
   358   from "3_4" have "y < z \<and> tree_greater z (Branch B va vb vii vc)" by simp
       
   359   hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans)
       
   360   with 1 "3_4" show ?case by simp
       
   361 next
       
   362   case ("4_2" va vb vd vc x w b y s c z t dd)
       
   363   hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
       
   364   hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
       
   365   with "4_2" show ?case by simp
       
   366 next
       
   367   case ("5_2" x w b y s c z t va vb vd vc)
       
   368   hence "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
       
   369   hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
       
   370   with "5_2" show ?case by simp
       
   371 next
       
   372   case ("5_3" va vb vd vc x w b y s c z t)
       
   373   hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
       
   374   hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
       
   375   with "5_3" show ?case by simp
       
   376 next
       
   377   case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
       
   378   hence "x < y \<and> tree_less x (Branch B va vb vg vc)" by simp
       
   379   hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans)
       
   380   from "5_4" have "y < z \<and> tree_greater z (Branch B vd ve vii vf)" by simp
       
   381   hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans)
       
   382   with 1 "5_4" show ?case by simp
       
   383 qed simp+
       
   384 
       
   385 lemma entries_balance [simp]:
       
   386   "entries (balance l k v r) = entries l @ (k, v) # entries r"
       
   387   by (induct l k v r rule: balance.induct) auto
       
   388 
       
   389 lemma keys_balance [simp]: 
       
   390   "keys (balance l k v r) = keys l @ k # keys r"
       
   391   by (simp add: keys_def)
       
   392 
       
   393 lemma balance_in_tree:  
       
   394   "entry_in_tree k x (balance l v y r) \<longleftrightarrow> entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r"
       
   395   by (auto simp add: keys_def)
       
   396 
       
   397 lemma lookup_balance[simp]: 
       
   398 fixes k :: "'a::linorder"
       
   399 assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
       
   400 shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x"
       
   401 by (rule lookup_from_in_tree) (auto simp:assms balance_in_tree balance_sorted)
       
   402 
       
   403 primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   404 where
       
   405   "paint c Empty = Empty"
       
   406 | "paint c (Branch _ l k v r) = Branch c l k v r"
       
   407 
       
   408 lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto
       
   409 lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto
       
   410 lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto
       
   411 lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto
       
   412 lemma paint_sorted[simp]: "sorted t \<Longrightarrow> sorted (paint c t)" by (cases t) auto
       
   413 lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto
       
   414 lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto)
       
   415 lemma paint_tree_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
       
   416 lemma paint_tree_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
       
   417 
       
   418 fun
       
   419   ins :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   420 where
       
   421   "ins f k v Empty = Branch R Empty k v Empty" |
       
   422   "ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r
       
   423                                else if k > x then balance l x y (ins f k v r)
       
   424                                else Branch B l x (f k y v) r)" |
       
   425   "ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r
       
   426                                else if k > x then Branch R l x y (ins f k v r)
       
   427                                else Branch R l x (f k y v) r)"
       
   428 
       
   429 lemma ins_inv1_inv2: 
       
   430   assumes "inv1 t" "inv2 t"
       
   431   shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t" 
       
   432   "color_of t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
       
   433   using assms
       
   434   by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight)
       
   435 
       
   436 lemma ins_tree_greater[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
       
   437   by (induct f k x t rule: ins.induct) auto
       
   438 lemma ins_tree_less[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
       
   439   by (induct f k x t rule: ins.induct) auto
       
   440 lemma ins_sorted[simp]: "sorted t \<Longrightarrow> sorted (ins f k x t)"
       
   441   by (induct f k x t rule: ins.induct) (auto simp: balance_sorted)
       
   442 
       
   443 lemma keys_ins: "set (keys (ins f k v t)) = { k } \<union> set (keys t)"
       
   444   by (induct f k v t rule: ins.induct) auto
       
   445 
       
   446 lemma lookup_ins: 
       
   447   fixes k :: "'a::linorder"
       
   448   assumes "sorted t"
       
   449   shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
       
   450                                                        | Some w \<Rightarrow> f k w v)) x"
       
   451 using assms by (induct f k v t rule: ins.induct) auto
       
   452 
       
   453 definition
       
   454   insert_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   455 where
       
   456   "insert_with_key f k v t = paint B (ins f k v t)"
       
   457 
       
   458 lemma insertwk_sorted: "sorted t \<Longrightarrow> sorted (insert_with_key f k x t)"
       
   459   by (auto simp: insert_with_key_def)
       
   460 
       
   461 theorem insertwk_is_rbt: 
       
   462   assumes inv: "is_rbt t" 
       
   463   shows "is_rbt (insert_with_key f k x t)"
       
   464 using assms
       
   465 unfolding insert_with_key_def is_rbt_def
       
   466 by (auto simp: ins_inv1_inv2)
       
   467 
       
   468 lemma lookup_insertwk: 
       
   469   assumes "sorted t"
       
   470   shows "lookup (insert_with_key f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
       
   471                                                        | Some w \<Rightarrow> f k w v)) x"
       
   472 unfolding insert_with_key_def using assms
       
   473 by (simp add:lookup_ins)
       
   474 
       
   475 definition
       
   476   insertw_def: "insert_with f = insert_with_key (\<lambda>_. f)"
       
   477 
       
   478 lemma insertw_sorted: "sorted t \<Longrightarrow> sorted (insert_with f k v t)" by (simp add: insertwk_sorted insertw_def)
       
   479 theorem insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insert_with f k v t)" by (simp add: insertwk_is_rbt insertw_def)
       
   480 
       
   481 lemma lookup_insertw:
       
   482   assumes "is_rbt t"
       
   483   shows "lookup (insert_with f k v t) = (lookup t)(k \<mapsto> (if k:dom (lookup t) then f (the (lookup t k)) v else v))"
       
   484 using assms
       
   485 unfolding insertw_def
       
   486 by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def)
       
   487 
       
   488 definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
       
   489   "insert = insert_with_key (\<lambda>_ _ nv. nv)"
       
   490 
       
   491 lemma insert_sorted: "sorted t \<Longrightarrow> sorted (insert k v t)" by (simp add: insertwk_sorted insert_def)
       
   492 theorem insert_is_rbt [simp]: "is_rbt t \<Longrightarrow> is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def)
       
   493 
       
   494 lemma lookup_insert: 
       
   495   assumes "is_rbt t"
       
   496   shows "lookup (insert k v t) = (lookup t)(k\<mapsto>v)"
       
   497 unfolding insert_def
       
   498 using assms
       
   499 by (rule_tac ext) (simp add: lookup_insertwk split:option.split)
       
   500 
       
   501 
       
   502 subsection {* Deletion *}
       
   503 
       
   504 lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1"
       
   505 by (cases t rule: rbt_cases) auto
       
   506 
       
   507 fun
       
   508   balance_left :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   509 where
       
   510   "balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" |
       
   511   "balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" |
       
   512   "balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" |
       
   513   "balance_left t k x s = Empty"
       
   514 
       
   515 lemma balance_left_inv2_with_inv1:
       
   516   assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt"
       
   517   shows "bheight (balance_left lt k v rt) = bheight lt + 1"
       
   518   and   "inv2 (balance_left lt k v rt)"
       
   519 using assms 
       
   520 by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight)
       
   521 
       
   522 lemma balance_left_inv2_app: 
       
   523   assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B"
       
   524   shows "inv2 (balance_left lt k v rt)" 
       
   525         "bheight (balance_left lt k v rt) = bheight rt"
       
   526 using assms 
       
   527 by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+ 
       
   528 
       
   529 lemma balance_left_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balance_left a k x b)"
       
   530   by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+
       
   531 
       
   532 lemma balance_left_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balance_left lt k x rt)"
       
   533 by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1)
       
   534 
       
   535 lemma balance_left_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_left l k v r)"
       
   536 apply (induct l k v r rule: balance_left.induct)
       
   537 apply (auto simp: balance_sorted)
       
   538 apply (unfold tree_greater_prop tree_less_prop)
       
   539 by force+
       
   540 
       
   541 lemma balance_left_tree_greater: 
       
   542   fixes k :: "'a::order"
       
   543   assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
       
   544   shows "k \<guillemotleft>| balance_left a x t b"
       
   545 using assms 
       
   546 by (induct a x t b rule: balance_left.induct) auto
       
   547 
       
   548 lemma balance_left_tree_less: 
       
   549   fixes k :: "'a::order"
       
   550   assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
       
   551   shows "balance_left a x t b |\<guillemotleft> k"
       
   552 using assms
       
   553 by (induct a x t b rule: balance_left.induct) auto
       
   554 
       
   555 lemma balance_left_in_tree: 
       
   556   assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r"
       
   557   shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)"
       
   558 using assms 
       
   559 by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree)
       
   560 
       
   561 fun
       
   562   balance_right :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   563 where
       
   564   "balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" |
       
   565   "balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" |
       
   566   "balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" |
       
   567   "balance_right t k x s = Empty"
       
   568 
       
   569 lemma balance_right_inv2_with_inv1:
       
   570   assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt"
       
   571   shows "inv2 (balance_right lt k v rt) \<and> bheight (balance_right lt k v rt) = bheight lt"
       
   572 using assms
       
   573 by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight)
       
   574 
       
   575 lemma balance_right_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balance_right a k x b)"
       
   576 by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+
       
   577 
       
   578 lemma balance_right_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balance_right lt k x rt)"
       
   579 by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1)
       
   580 
       
   581 lemma balance_right_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_right l k v r)"
       
   582 apply (induct l k v r rule: balance_right.induct)
       
   583 apply (auto simp:balance_sorted)
       
   584 apply (unfold tree_less_prop tree_greater_prop)
       
   585 by force+
       
   586 
       
   587 lemma balance_right_tree_greater: 
       
   588   fixes k :: "'a::order"
       
   589   assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
       
   590   shows "k \<guillemotleft>| balance_right a x t b"
       
   591 using assms by (induct a x t b rule: balance_right.induct) auto
       
   592 
       
   593 lemma balance_right_tree_less: 
       
   594   fixes k :: "'a::order"
       
   595   assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
       
   596   shows "balance_right a x t b |\<guillemotleft> k"
       
   597 using assms by (induct a x t b rule: balance_right.induct) auto
       
   598 
       
   599 lemma balance_right_in_tree:
       
   600   assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r"
       
   601   shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)"
       
   602 using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree)
       
   603 
       
   604 fun
       
   605   combine :: "('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   606 where
       
   607   "combine Empty x = x" 
       
   608 | "combine x Empty = x" 
       
   609 | "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of
       
   610                                       Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) |
       
   611                                       bc \<Rightarrow> Branch R a k x (Branch R bc s y d))" 
       
   612 | "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of
       
   613                                       Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) |
       
   614                                       bc \<Rightarrow> balance_left a k x (Branch B bc s y d))" 
       
   615 | "combine a (Branch R b k x c) = Branch R (combine a b) k x c" 
       
   616 | "combine (Branch R a k x b) c = Branch R a k x (combine b c)" 
       
   617 
       
   618 lemma combine_inv2:
       
   619   assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt"
       
   620   shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)"
       
   621 using assms 
       
   622 by (induct lt rt rule: combine.induct) 
       
   623    (auto simp: balance_left_inv2_app split: rbt.splits color.splits)
       
   624 
       
   625 lemma combine_inv1: 
       
   626   assumes "inv1 lt" "inv1 rt"
       
   627   shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (combine lt rt)"
       
   628          "inv1l (combine lt rt)"
       
   629 using assms 
       
   630 by (induct lt rt rule: combine.induct)
       
   631    (auto simp: balance_left_inv1 split: rbt.splits color.splits)
       
   632 
       
   633 lemma combine_tree_greater[simp]: 
       
   634   fixes k :: "'a::linorder"
       
   635   assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r" 
       
   636   shows "k \<guillemotleft>| combine l r"
       
   637 using assms 
       
   638 by (induct l r rule: combine.induct)
       
   639    (auto simp: balance_left_tree_greater split:rbt.splits color.splits)
       
   640 
       
   641 lemma combine_tree_less[simp]: 
       
   642   fixes k :: "'a::linorder"
       
   643   assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k" 
       
   644   shows "combine l r |\<guillemotleft> k"
       
   645 using assms 
       
   646 by (induct l r rule: combine.induct)
       
   647    (auto simp: balance_left_tree_less split:rbt.splits color.splits)
       
   648 
       
   649 lemma combine_sorted: 
       
   650   fixes k :: "'a::linorder"
       
   651   assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
       
   652   shows "sorted (combine l r)"
       
   653 using assms proof (induct l r rule: combine.induct)
       
   654   case (3 a x v b c y w d)
       
   655   hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d"
       
   656     by auto
       
   657   with 3
       
   658   show ?case
       
   659     by (cases "combine b c" rule: rbt_cases)
       
   660       (auto, (metis combine_tree_greater combine_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+)
       
   661 next
       
   662   case (4 a x v b c y w d)
       
   663   hence "x < k \<and> tree_greater k c" by simp
       
   664   hence "tree_greater x c" by (blast dest: tree_greater_trans)
       
   665   with 4 have 2: "tree_greater x (combine b c)" by (simp add: combine_tree_greater)
       
   666   from 4 have "k < y \<and> tree_less k b" by simp
       
   667   hence "tree_less y b" by (blast dest: tree_less_trans)
       
   668   with 4 have 3: "tree_less y (combine b c)" by (simp add: combine_tree_less)
       
   669   show ?case
       
   670   proof (cases "combine b c" rule: rbt_cases)
       
   671     case Empty
       
   672     from 4 have "x < y \<and> tree_greater y d" by auto
       
   673     hence "tree_greater x d" by (blast dest: tree_greater_trans)
       
   674     with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto
       
   675     with Empty show ?thesis by (simp add: balance_left_sorted)
       
   676   next
       
   677     case (Red lta va ka rta)
       
   678     with 2 4 have "x < va \<and> tree_less x a" by simp
       
   679     hence 5: "tree_less va a" by (blast dest: tree_less_trans)
       
   680     from Red 3 4 have "va < y \<and> tree_greater y d" by simp
       
   681     hence "tree_greater va d" by (blast dest: tree_greater_trans)
       
   682     with Red 2 3 4 5 show ?thesis by simp
       
   683   next
       
   684     case (Black lta va ka rta)
       
   685     from 4 have "x < y \<and> tree_greater y d" by auto
       
   686     hence "tree_greater x d" by (blast dest: tree_greater_trans)
       
   687     with Black 2 3 4 have "sorted a" and "sorted (Branch B (combine b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (combine b c) y w d)" by auto
       
   688     with Black show ?thesis by (simp add: balance_left_sorted)
       
   689   qed
       
   690 next
       
   691   case (5 va vb vd vc b x w c)
       
   692   hence "k < x \<and> tree_less k (Branch B va vb vd vc)" by simp
       
   693   hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
       
   694   with 5 show ?case by (simp add: combine_tree_less)
       
   695 next
       
   696   case (6 a x v b va vb vd vc)
       
   697   hence "x < k \<and> tree_greater k (Branch B va vb vd vc)" by simp
       
   698   hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
       
   699   with 6 show ?case by (simp add: combine_tree_greater)
       
   700 qed simp+
       
   701 
       
   702 lemma combine_in_tree: 
       
   703   assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r"
       
   704   shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)"
       
   705 using assms 
       
   706 proof (induct l r rule: combine.induct)
       
   707   case (4 _ _ _ b c)
       
   708   hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2)
       
   709   from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1)
       
   710 
       
   711   show ?case
       
   712   proof (cases "combine b c" rule: rbt_cases)
       
   713     case Empty
       
   714     with 4 a show ?thesis by (auto simp: balance_left_in_tree)
       
   715   next
       
   716     case (Red lta ka va rta)
       
   717     with 4 show ?thesis by auto
       
   718   next
       
   719     case (Black lta ka va rta)
       
   720     with a b 4  show ?thesis by (auto simp: balance_left_in_tree)
       
   721   qed 
       
   722 qed (auto split: rbt.splits color.splits)
       
   723 
       
   724 fun
       
   725   del_from_left :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
       
   726   del_from_right :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
       
   727   del :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   728 where
       
   729   "del x Empty = Empty" |
       
   730   "del x (Branch c a y s b) = (if x < y then del_from_left x a y s b else (if x > y then del_from_right x a y s b else combine a b))" |
       
   731   "del_from_left x (Branch B lt z v rt) y s b = balance_left (del x (Branch B lt z v rt)) y s b" |
       
   732   "del_from_left x a y s b = Branch R (del x a) y s b" |
       
   733   "del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (del x (Branch B lt z v rt))" | 
       
   734   "del_from_right x a y s b = Branch R a y s (del x b)"
       
   735 
       
   736 lemma 
       
   737   assumes "inv2 lt" "inv1 lt"
       
   738   shows
       
   739   "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
       
   740   inv2 (del_from_left x lt k v rt) \<and> bheight (del_from_left x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_left x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_left x lt k v rt))"
       
   741   and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
       
   742   inv2 (del_from_right x lt k v rt) \<and> bheight (del_from_right x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_right x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_right x lt k v rt))"
       
   743   and del_inv1_inv2: "inv2 (del x lt) \<and> (color_of lt = R \<and> bheight (del x lt) = bheight lt \<and> inv1 (del x lt) 
       
   744   \<or> color_of lt = B \<and> bheight (del x lt) = bheight lt - 1 \<and> inv1l (del x lt))"
       
   745 using assms
       
   746 proof (induct x lt k v rt and x lt k v rt and x lt rule: del_from_left_del_from_right_del.induct)
       
   747 case (2 y c _ y')
       
   748   have "y = y' \<or> y < y' \<or> y > y'" by auto
       
   749   thus ?case proof (elim disjE)
       
   750     assume "y = y'"
       
   751     with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+
       
   752   next
       
   753     assume "y < y'"
       
   754     with 2 show ?thesis by (cases c) auto
       
   755   next
       
   756     assume "y' < y"
       
   757     with 2 show ?thesis by (cases c) auto
       
   758   qed
       
   759 next
       
   760   case (3 y lt z v rta y' ss bb) 
       
   761   thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+
       
   762 next
       
   763   case (5 y a y' ss lt z v rta)
       
   764   thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+
       
   765 next
       
   766   case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
       
   767 qed auto
       
   768 
       
   769 lemma 
       
   770   del_from_left_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_left x lt k y rt)"
       
   771   and del_from_right_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_right x lt k y rt)"
       
   772   and del_tree_less: "tree_less v lt \<Longrightarrow> tree_less v (del x lt)"
       
   773 by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) 
       
   774    (auto simp: balance_left_tree_less balance_right_tree_less)
       
   775 
       
   776 lemma del_from_left_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_left x lt k y rt)"
       
   777   and del_from_right_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_right x lt k y rt)"
       
   778   and del_tree_greater: "tree_greater v lt \<Longrightarrow> tree_greater v (del x lt)"
       
   779 by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
       
   780    (auto simp: balance_left_tree_greater balance_right_tree_greater)
       
   781 
       
   782 lemma "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_left x lt k y rt)"
       
   783   and "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_right x lt k y rt)"
       
   784   and del_sorted: "sorted lt \<Longrightarrow> sorted (del x lt)"
       
   785 proof (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
       
   786   case (3 x lta zz v rta yy ss bb)
       
   787   from 3 have "tree_less yy (Branch B lta zz v rta)" by simp
       
   788   hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less)
       
   789   with 3 show ?case by (simp add: balance_left_sorted)
       
   790 next
       
   791   case ("4_2" x vaa vbb vdd vc yy ss bb)
       
   792   hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp
       
   793   hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less)
       
   794   with "4_2" show ?case by simp
       
   795 next
       
   796   case (5 x aa yy ss lta zz v rta) 
       
   797   hence "tree_greater yy (Branch B lta zz v rta)" by simp
       
   798   hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater)
       
   799   with 5 show ?case by (simp add: balance_right_sorted)
       
   800 next
       
   801   case ("6_2" x aa yy ss vaa vbb vdd vc)
       
   802   hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp
       
   803   hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater)
       
   804   with "6_2" show ?case by simp
       
   805 qed (auto simp: combine_sorted)
       
   806 
       
   807 lemma "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_left x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
       
   808   and "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_right x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
       
   809   and del_in_tree: "\<lbrakk>sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))"
       
   810 proof (induct x lt kt y rt and x lt kt y rt and x t rule: del_from_left_del_from_right_del.induct)
       
   811   case (2 xx c aa yy ss bb)
       
   812   have "xx = yy \<or> xx < yy \<or> xx > yy" by auto
       
   813   from this 2 show ?case proof (elim disjE)
       
   814     assume "xx = yy"
       
   815     with 2 show ?thesis proof (cases "xx = k")
       
   816       case True
       
   817       from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \<and> k = yy" by simp
       
   818       hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop)
       
   819       with `xx = yy` 2 `xx = k` show ?thesis by (simp add: combine_in_tree)
       
   820     qed (simp add: combine_in_tree)
       
   821   qed simp+
       
   822 next    
       
   823   case (3 xx lta zz vv rta yy ss bb)
       
   824   def mt[simp]: mt == "Branch B lta zz vv rta"
       
   825   from 3 have "inv2 mt \<and> inv1 mt" by simp
       
   826   hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
       
   827   with 3 have 4: "entry_in_tree k v (del_from_left xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balance_left_in_tree)
       
   828   thus ?case proof (cases "xx = k")
       
   829     case True
       
   830     from 3 True have "tree_greater yy bb \<and> yy > k" by simp
       
   831     hence "tree_greater k bb" by (blast dest: tree_greater_trans)
       
   832     with 3 4 True show ?thesis by (auto simp: tree_greater_nit)
       
   833   qed auto
       
   834 next
       
   835   case ("4_1" xx yy ss bb)
       
   836   show ?case proof (cases "xx = k")
       
   837     case True
       
   838     with "4_1" have "tree_greater yy bb \<and> k < yy" by simp
       
   839     hence "tree_greater k bb" by (blast dest: tree_greater_trans)
       
   840     with "4_1" `xx = k` 
       
   841    have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit)
       
   842     thus ?thesis by auto
       
   843   qed simp+
       
   844 next
       
   845   case ("4_2" xx vaa vbb vdd vc yy ss bb)
       
   846   thus ?case proof (cases "xx = k")
       
   847     case True
       
   848     with "4_2" have "k < yy \<and> tree_greater yy bb" by simp
       
   849     hence "tree_greater k bb" by (blast dest: tree_greater_trans)
       
   850     with True "4_2" show ?thesis by (auto simp: tree_greater_nit)
       
   851   qed auto
       
   852 next
       
   853   case (5 xx aa yy ss lta zz vv rta)
       
   854   def mt[simp]: mt == "Branch B lta zz vv rta"
       
   855   from 5 have "inv2 mt \<and> inv1 mt" by simp
       
   856   hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
       
   857   with 5 have 3: "entry_in_tree k v (del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balance_right_in_tree)
       
   858   thus ?case proof (cases "xx = k")
       
   859     case True
       
   860     from 5 True have "tree_less yy aa \<and> yy < k" by simp
       
   861     hence "tree_less k aa" by (blast dest: tree_less_trans)
       
   862     with 3 5 True show ?thesis by (auto simp: tree_less_nit)
       
   863   qed auto
       
   864 next
       
   865   case ("6_1" xx aa yy ss)
       
   866   show ?case proof (cases "xx = k")
       
   867     case True
       
   868     with "6_1" have "tree_less yy aa \<and> k > yy" by simp
       
   869     hence "tree_less k aa" by (blast dest: tree_less_trans)
       
   870     with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit)
       
   871   qed simp
       
   872 next
       
   873   case ("6_2" xx aa yy ss vaa vbb vdd vc)
       
   874   thus ?case proof (cases "xx = k")
       
   875     case True
       
   876     with "6_2" have "k > yy \<and> tree_less yy aa" by simp
       
   877     hence "tree_less k aa" by (blast dest: tree_less_trans)
       
   878     with True "6_2" show ?thesis by (auto simp: tree_less_nit)
       
   879   qed auto
       
   880 qed simp
       
   881 
       
   882 
       
   883 definition delete where
       
   884   delete_def: "delete k t = paint B (del k t)"
       
   885 
       
   886 theorem delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (delete k t)"
       
   887 proof -
       
   888   from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto 
       
   889   hence "inv2 (del k t) \<and> (color_of t = R \<and> bheight (del k t) = bheight t \<and> inv1 (del k t) \<or> color_of t = B \<and> bheight (del k t) = bheight t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
       
   890   hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "color_of t") auto
       
   891   with assms show ?thesis
       
   892     unfolding is_rbt_def delete_def
       
   893     by (auto intro: paint_sorted del_sorted)
       
   894 qed
       
   895 
       
   896 lemma delete_in_tree: 
       
   897   assumes "is_rbt t" 
       
   898   shows "entry_in_tree k v (delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)"
       
   899   using assms unfolding is_rbt_def delete_def
       
   900   by (auto simp: del_in_tree)
       
   901 
       
   902 lemma lookup_delete:
       
   903   assumes is_rbt: "is_rbt t"
       
   904   shows "lookup (delete k t) = (lookup t)|`(-{k})"
       
   905 proof
       
   906   fix x
       
   907   show "lookup (delete k t) x = (lookup t |` (-{k})) x" 
       
   908   proof (cases "x = k")
       
   909     assume "x = k" 
       
   910     with is_rbt show ?thesis
       
   911       by (cases "lookup (delete k t) k") (auto simp: lookup_in_tree delete_in_tree)
       
   912   next
       
   913     assume "x \<noteq> k"
       
   914     thus ?thesis
       
   915       by auto (metis is_rbt delete_is_rbt delete_in_tree is_rbt_sorted lookup_from_in_tree)
       
   916   qed
       
   917 qed
       
   918 
       
   919 
       
   920 subsection {* Union *}
       
   921 
       
   922 primrec
       
   923   union_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
       
   924 where
       
   925   "union_with_key f t Empty = t"
       
   926 | "union_with_key f t (Branch c lt k v rt) = union_with_key f (union_with_key f (insert_with_key f k v t) lt) rt"
       
   927 
       
   928 lemma unionwk_sorted: "sorted lt \<Longrightarrow> sorted (union_with_key f lt rt)" 
       
   929   by (induct rt arbitrary: lt) (auto simp: insertwk_sorted)
       
   930 theorem unionwk_is_rbt[simp]: "is_rbt lt \<Longrightarrow> is_rbt (union_with_key f lt rt)" 
       
   931   by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+
       
   932 
       
   933 definition
       
   934   union_with where
       
   935   "union_with f = union_with_key (\<lambda>_. f)"
       
   936 
       
   937 theorem unionw_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union_with f lt rt)" unfolding union_with_def by simp
       
   938 
       
   939 definition union where
       
   940   "union = union_with_key (%_ _ rv. rv)"
       
   941 
       
   942 theorem union_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union lt rt)" unfolding union_def by simp
       
   943 
       
   944 lemma union_Branch[simp]:
       
   945   "union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt"
       
   946   unfolding union_def insert_def
       
   947   by simp
       
   948 
       
   949 lemma lookup_union:
       
   950   assumes "is_rbt s" "sorted t"
       
   951   shows "lookup (union s t) = lookup s ++ lookup t"
       
   952 using assms
       
   953 proof (induct t arbitrary: s)
       
   954   case Empty thus ?case by (auto simp: union_def)
       
   955 next
       
   956   case (Branch c l k v r s)
       
   957   then have "sorted r" "sorted l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
       
   958 
       
   959   have meq: "lookup s(k \<mapsto> v) ++ lookup l ++ lookup r =
       
   960     lookup s ++
       
   961     (\<lambda>a. if a < k then lookup l a
       
   962     else if k < a then lookup r a else Some v)" (is "?m1 = ?m2")
       
   963   proof (rule ext)
       
   964     fix a
       
   965 
       
   966    have "k < a \<or> k = a \<or> k > a" by auto
       
   967     thus "?m1 a = ?m2 a"
       
   968     proof (elim disjE)
       
   969       assume "k < a"
       
   970       with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tree_less_trans)
       
   971       with `k < a` show ?thesis
       
   972         by (auto simp: map_add_def split: option.splits)
       
   973     next
       
   974       assume "k = a"
       
   975       with `l |\<guillemotleft> k` `k \<guillemotleft>| r` 
       
   976       show ?thesis by (auto simp: map_add_def)
       
   977     next
       
   978       assume "a < k"
       
   979       from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tree_greater_trans)
       
   980       with `a < k` show ?thesis
       
   981         by (auto simp: map_add_def split: option.splits)
       
   982     qed
       
   983   qed
       
   984 
       
   985   from Branch have is_rbt: "is_rbt (RBT_Impl.union (RBT_Impl.insert k v s) l)"
       
   986     by (auto intro: union_is_rbt insert_is_rbt)
       
   987   with Branch have IHs:
       
   988     "lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r"
       
   989     "lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l"
       
   990     by auto
       
   991   
       
   992   with meq show ?case
       
   993     by (auto simp: lookup_insert[OF Branch(3)])
       
   994 
       
   995 qed
       
   996 
       
   997 
       
   998 subsection {* Modifying existing entries *}
       
   999 
       
  1000 primrec
       
  1001   map_entry :: "'a\<Colon>linorder \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
       
  1002 where
       
  1003   "map_entry k f Empty = Empty"
       
  1004 | "map_entry k f (Branch c lt x v rt) =
       
  1005     (if k < x then Branch c (map_entry k f lt) x v rt
       
  1006     else if k > x then (Branch c lt x v (map_entry k f rt))
       
  1007     else Branch c lt x (f v) rt)"
       
  1008 
       
  1009 lemma map_entry_color_of: "color_of (map_entry k f t) = color_of t" by (induct t) simp+
       
  1010 lemma map_entry_inv1: "inv1 (map_entry k f t) = inv1 t" by (induct t) (simp add: map_entry_color_of)+
       
  1011 lemma map_entry_inv2: "inv2 (map_entry k f t) = inv2 t" "bheight (map_entry k f t) = bheight t" by (induct t) simp+
       
  1012 lemma map_entry_tree_greater: "tree_greater a (map_entry k f t) = tree_greater a t" by (induct t) simp+
       
  1013 lemma map_entry_tree_less: "tree_less a (map_entry k f t) = tree_less a t" by (induct t) simp+
       
  1014 lemma map_entry_sorted: "sorted (map_entry k f t) = sorted t"
       
  1015   by (induct t) (simp_all add: map_entry_tree_less map_entry_tree_greater)
       
  1016 
       
  1017 theorem map_entry_is_rbt [simp]: "is_rbt (map_entry k f t) = is_rbt t" 
       
  1018 unfolding is_rbt_def by (simp add: map_entry_inv2 map_entry_color_of map_entry_sorted map_entry_inv1 )
       
  1019 
       
  1020 theorem lookup_map_entry:
       
  1021   "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
       
  1022   by (induct t) (auto split: option.splits simp add: expand_fun_eq)
       
  1023 
       
  1024 
       
  1025 subsection {* Mapping all entries *}
       
  1026 
       
  1027 primrec
       
  1028   map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'c) rbt"
       
  1029 where
       
  1030   "map f Empty = Empty"
       
  1031 | "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)"
       
  1032 
       
  1033 lemma map_entries [simp]: "entries (map f t) = List.map (\<lambda>(k, v). (k, f k v)) (entries t)"
       
  1034   by (induct t) auto
       
  1035 lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def)
       
  1036 lemma map_tree_greater: "tree_greater k (map f t) = tree_greater k t" by (induct t) simp+
       
  1037 lemma map_tree_less: "tree_less k (map f t) = tree_less k t" by (induct t) simp+
       
  1038 lemma map_sorted: "sorted (map f t) = sorted t"  by (induct t) (simp add: map_tree_less map_tree_greater)+
       
  1039 lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+
       
  1040 lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+
       
  1041 lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+
       
  1042 theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t" 
       
  1043 unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_sorted map_color_of)
       
  1044 
       
  1045 theorem lookup_map: "lookup (map f t) x = Option.map (f x) (lookup t x)"
       
  1046   by (induct t) auto
       
  1047 
       
  1048 
       
  1049 subsection {* Folding over entries *}
       
  1050 
       
  1051 definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
       
  1052   "fold f t s = foldl (\<lambda>s (k, v). f k v s) s (entries t)"
       
  1053 
       
  1054 lemma fold_simps [simp, code]:
       
  1055   "fold f Empty = id"
       
  1056   "fold f (Branch c lt k v rt) = fold f rt \<circ> f k v \<circ> fold f lt"
       
  1057   by (simp_all add: fold_def expand_fun_eq)
       
  1058 
       
  1059 
       
  1060 subsection {* Bulkloading a tree *}
       
  1061 
       
  1062 definition bulkload :: "('a \<times> 'b) list \<Rightarrow> ('a\<Colon>linorder, 'b) rbt" where
       
  1063   "bulkload xs = foldr (\<lambda>(k, v). insert k v) xs Empty"
       
  1064 
       
  1065 lemma bulkload_is_rbt [simp, intro]:
       
  1066   "is_rbt (bulkload xs)"
       
  1067   unfolding bulkload_def by (induct xs) auto
       
  1068 
       
  1069 lemma lookup_bulkload:
       
  1070   "lookup (bulkload xs) = map_of xs"
       
  1071 proof -
       
  1072   obtain ys where "ys = rev xs" by simp
       
  1073   have "\<And>t. is_rbt t \<Longrightarrow>
       
  1074     lookup (foldl (\<lambda>t (k, v). insert k v t) t ys) = lookup t ++ map_of (rev ys)"
       
  1075       by (induct ys) (simp_all add: bulkload_def split_def lookup_insert)
       
  1076   from this Empty_is_rbt have
       
  1077     "lookup (foldl (\<lambda>t (k, v). insert k v t) Empty (rev xs)) = lookup Empty ++ map_of xs"
       
  1078      by (simp add: `ys = rev xs`)
       
  1079   then show ?thesis by (simp add: bulkload_def foldl_foldr lookup_Empty split_def)
       
  1080 qed
       
  1081 
       
  1082 hide (open) const Empty insert delete entries keys bulkload lookup map_entry map fold union sorted
       
  1083 
       
  1084 end